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Chapter 1
Signal Processing

Abstract To be completed

1.1 Sampling,Interpolation and Aliasing

This chapter is meant to be a short introduction to Digital Signal processing. Most
real life signals exist in analog ( continuous time) domain but from a computational
point of view it makes sense to discretize them first. These signals are first sampled
and then digitized (sampling along the dependent axis) to convert them to digital
signals. The conversion back to analog signal is called interpolation and utilizes a
Digital to Analog converter. More on these conversions can be found in references.

1.1.1 Shannon’s Sampling Theorem

In order to exactly recover a continuous time signal containing a maximum fre-
quency of fmax , it should be sampled periodically at a rate of fs > 2 fmax. The lower
bound on the sampling rate fs is called Nyquist frequency fN = 2 fmax.

Let x(t) be the continuous-time signal and x(k) be the samples of this signal then
according to Shannon Interpolation rule

x(t) =
k=∞

∑
k=−∞

x(k)h(t− kTs)

where Ts =
1
fs

is the sampling rate and h(t) =
sin(π t

Ts )

π
t

Ts
is a sinc-shaped envelope.

1
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1.1.1.1 Aliasing

Aliasing occurs when a signal is sampled at a frequency less than the Nyquist fre-
quency, fs < 2 fmax which causes higher frequencies [ > fs/2 ] in the signal to appear
as lower frequencies and distorts the reconstructed signal. An example of aliasing
is shown in the figure. A sampling rate of 100Hz is set and two sinusoids with fre-
quency components 30Hz and 60Hz respectively are sampled with this sampling
frequency. Aliasing occurs in the second case and 60Hz sinusoid appears as 40Hz.
This phenomena is also known as folding as the signal appears to be folded back
into the lower frequency.

Fig. 1.1 Aliasing Demo: a) 30 Hz sinusoid sampled by 100 Hz results in no aliasing b) 60 Hz
sinusoid sampled by 100 Hz is aliased and appears as 40 Hz

1.2 Digital FIR Filters

A digital filter is a system that processes a digital signal. In 1-D the filtering process
usually consists of removing or enhancing certain bands of frequency.
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Fig. 1.2 Digital Filters

In the figure above h(n) is the filter transfer function while x(n) and y(n) are
input and output signals, respectively.

1.2.0.2 Finite Impulse Response (FIR) Filters

FIR filters have an impulse response that persists for only a finite number of samples
and it is given by

h(n) = [h(0),h(1), ......,h(N−1)]

The output response of this filter is given by

y(n) =
N−1

∑
k=0

x(k)h(n− k)

Fig. 1.3 FIR Filters

1.2.0.3 Linear Phase FIR filters

Frequency response of any digital filter can be expressed in a magnitude-phase form.

H(exp jω) = ‖H(ω)‖6 φ(ω)

A Linear Phase filter is one whose phase ω is linear
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φ(ω) = Aω +B

A Linear Phase filter delays all frequency components equally (group delay) and
it is highly desirable in phase-sensitive applications like image processing. Linear
phase FIR filters can be easily designed by using symmetric impulse response. Fol-
lowing is a five tap FIR filter with coefficients

[−0.125,0.250,0.750,0.250,−0.125]

and its magnitude-phase response.

Fig. 1.4 FIR Low Pass Filter Impulse Response

Fig. 1.5 FIR Low Pass Filter Magnitude-Phase Response
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1.3 Multirate Systems and Filter Banks

Multirate systems are systems that contain multiple sample rates. There are a num-
ber of reasons why one may want such a system. Multirate may be needed to reduce
computational needs of a system. Instead of ,say, N operations per cycle the sys-
tem may need N/M operations if the sampling rate is reduced by M. It may also be
needed to help reduce redundancy as in the case of multichannel communications
and M-band filterbanks.

1.3.0.4 Decimation

Fig. 1.6 Decimation

Decimation by an integer M corresponds to retaining every Mth sample and dis-
carding M−1 samples. In frequency domain, the output Y (e jω) is given by

Y (e jω) =
1
M

X(e
jω+2kπ

M )

for k = 0,1, ....,M−1 Aliasing is an issue as downsampling “stretches” the band-
width by a factor M. Applying the Shannon sampling theorem, the sampling fre-
quency must be fs > 2 fmaxM in order to prevent aliasing.An example of aliasing
is shown below. A signal consisting of two sinusoids at 50Hz and 130Hz is orig-
inally sampled at 1000Hz. It is then downsampled by 2 and 5. In the first case
fs = 1000Hz is greater than 2 fmaxM = 520Hz and, therefore, no aliasing occurs.
In the second case, fs = 1000Hz is less than 2 fmaxM = 1300Hz and we see higher
frequency appearing at 350 Hz.
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Fig. 1.7 Decimation Example 1

Fig. 1.8 Decimation Example 2
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Fig. 1.9 Decimation Example 2

1.3.0.5 Interpolation

At its simplest, L-interpolation is the process of adding L−1 zeros between sample
values of a signal x.

Fig. 1.10 Interpolation

In frequency domain, the output Y (e jω) is given by

Y (e jω) = X(e jLω)

“Imaging” is a an upsampling phenomena that corresponds to aliasing in the
downsampling case. Since an interpolator is compressing a signal, its images appear
in the frequency band and depending on the interpolation factor we need a suitable
low-pass filter (anti-imaging filter) to filter out these images. Shown below is an
example of imaging after upsampling the signal from example above by a factor of
2.
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Fig. 1.11 Interpolation Example

1.3.0.6 Polyphase Representation

Consider a time series X(z) = ∑
∞
n=−∞ x(n)z−n. We can use the decimation by 2 idea

and separate it into its even and odd coefficients.

X(z) =
∞

∑
n=−∞

x(2n)z−2n + z−1
∞

∑
n=−∞

x(2n+1)z−(2n)

Let P0(z) = ∑
∞
n=−∞ x(2n)z−n and P1(z) = ∑

∞
n=−∞ x(2n+ 1)z−n then X(z) can be

written as
X(z) = P0(z2)+ z−1P1(z2)

This idea can be extended to any value M instead of just 2.

X(z)=
∞

∑
n=−∞

x(Mn)z−Mn+z−1
∞

∑
n=−∞

x(Mn+1)z−(Mn)+....+z−(M−1)
∞

∑
n=−∞

x(Mn+M−1)z−(Mn)

This representation is known as polyphase representation and is used to imple-
ment efficient filter banks :

X(z) =
M−1

∑
i=0

Pi(zM)z−i

1.3.1 Filter Banks

Low pass and High pass filters process the signal by allowing only specific frequen-
cies to go through- low pass and high pass frequencies, respectively. This obviously
serves a very useful purpose but if these filters are used together then with proper de-
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sign they can also reconstruct the original signal. A filter bank is a system in which
two or more filters are used together to analyze and process a given signal.

Fig. 1.12 Two Channel Filter Bank

Figure above shows an example of a two channel filter bank. Analysis part of the
filter bank decomposes a signal while the synthesis part reconstructs it. h1(n) and
h2(n) are the low pass filters while g1(n) and g2(n) are complementary high pass
filters.

1.3.1.1 Perfect Reconstruction property

Using interpolation and decimation frequency equations, the outputs at the two
output nodes of analysis filters are 1

2 (X(ω

2 )H1(
ω

2 ) + X(ω

2 + π)H1(
ω

2 + π)) and
1
2 (X(ω

2 )G1(
ω

2 )+X(ω

2 +π)G1(
ω

2 +π))
After feeding these two outputs to the two input nodes of synthesis filter, we get

Y (ω)=
1
2
(H1(z)H2(z)+G1(z)G2(z))X(z)+

1
2
(H1(−z)H2(z)+G1(−z)G2(z))X(−z)

For perfect reconstruction, we need Y (z) = X(z), this gives us two equations

1
2
(H1(z)H2(z)+G1(z)G2(z)) = z−L

and

1
2
(H1(−z)H2(z)+G1(−z)G2(z)) = 0

First equation is called the no distortion equation and the right hand term is a
delay element. Second equation is the anti-aliasing equation and needs to be zero
for Perfect Reconstruction Filter Bank to serve its purpose.
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1.3.1.2 Orthogonal Filter Banks

Before discussing Orthogonal Filter Banks it is important to discuss orthogonality
with respect to a filter h(n). In wavelet theory, double shift orthogonal filters play a
very important role. A filter h(n) is double shift orthogonal if

< h(n),h(n−2k)>= δ (k)

In the case of two channel filter banks, we can obtain the other three filters just
by designing one filter and then using the orthogonality and Perfect Reconstruction
properties. Because of double shift orthogonality, we can only design even orthog-
onal filters. It has been shown that for a given low pass filter h1(n), the high pass
filter can be obtained by alternating flip method, ie., coefficients of low pass fil-
ters are flipped and then the sign of every alternate coefficient is flipped. The filters
of synthesis filter banks can be obtained by using the no-distortion and no-aliasing
equations of the Perfect Reconstruction property. It turns out that for a given N +1-
tap low pass analysis filter H1(z), the other three filters are

High Pass Analysis Filter H2(z) =−z−NH1(z)
Low Pass Synthesis Filter G1(z) = H2(−z)
High pass Synthesis Filter G2(z) =−H1(z)

1.3.1.3 Biorthogonal Filter Banks

As has been mentioned previously, linear phase filter response is a desirable property
in a number of applications and even with all their positives, Orthogonal filter banks
are not linear phase filters. Only Haar filter bank is orthogonal and linear phase.
Biorthogonal filter banks consists of filters where the filters are not orthogonal to
themselves. They are constructed such that the analysis filters are orthogonal to the
synthesis filters in addition to being linear phase. Using orthogonality and perfect
reconstruction properties of biorthogonal filters, it can be shown that if given two
FIR filters H1(z) and G1(z), the other two filters in the biorthogonal filter bank can
be constructed as

H2(z) = G1(−z) and G2(z) =−H1(−z)

1.4 Iterated Filter Banks

1.4.1 Noble Identities

Noble Identities are utilized in multirate systems to reverse the order of resampling
and filtering.
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Fig. 1.13 Noble Identity

The first row shows the noble identity of downsampling while the second one
shows upsampling. Downsampling by N followed by a filtering operation with
H(omega is equivalent to filteing with an N-interpolated version H(Nω and then
downsampling by N. Noble identities can be utilized to make computation more
efficient or to simplify a multi stage multirate system.

1.4.2 Iterated Filter Banks

In the classical Discrete Wavelet transform algorithm, Iterated filter banks are con-
structed by iterating over low pass channels of a two-channel filter bank.Other con-
structions are also possible depending on specific needs but I will concentrate on
Low Pass iterations for obvious reasons.

Fig. 1.14 Analysis Bank
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Fig. 1.15 Synthesis Bank

Using Noble Identities it can be shown that iterating over J stages of two-
channel analysis filter bank is equivalent to filtering by ∏

J−1
n=0 H(2nω) or in terms

of Z−transform ∏
J−1
n=0 H(z2n

) and then downsampling by 2J . The process works in
reverse in synthesis case.

1.5 Fourier Analysis

Fourier Analysis is rooted in the knowledge that almost all signals can be repre-
sented as a sum of cosines and it makes sense to break them down into their com-
ponent cosines in order to analyze for things like noise, discontinuities etc. in the
frequency domain.

1.5.1 Continuous Time Analysis

In continuous domain Fourier Transform analysis equation is given by

X(e jω) =
∫

∞

−∞

x(t)e− jωtdt

and the synthesis equation is

x(t) =
1

2π

∫
∞

−∞

X(e jω)e jωtdω

This continuous fourier transform exists only and only if signal x(t) is absolutely
integrable. ∫

∞

−∞

x(t)dt < ∞
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Before we move on to discrete domain it is helpful to point out that Fourier
Transform requires knowledge of signal at all times which is really impractical in
discrete domain. Continuous Time Fourier Series [CTFS] attempts to address this
issue and is given by

cn =
1
T

∫ T

0
x(t)e− jnω0tdt

where cn is the nth harmonic and ω0 is the fundamental frequency.
The synthesis equation is given by

x(t) =
∞

∑
n=−∞

cne jnω0t

CTFS seems better from a digital point of view than it actually is. The integral is
finite but for synthesis equation we still need to calculate for all values of n which
isn’t any simpler for computers.

1.5.2 Discrete Time Analysis

Corresponding to continuous time fourier transform, we have Discrete Time Fourier
Transform(DTFT).

X(e jωn) =
∞

∑
k=−∞

x(k)e− jkωn

where ωn ∈ (−π,π) is the normalized frequency.It is normalized with respect to
sampling frequency fs. DTFT exists only if x(k) is absolutely summable.

∞

∑
k=−∞

x(k)< ∞

Inverse Discrete Time Fourier Transform is similarly given by

x(k) =
1

2π

∫
π

ωn=−π

X(e jωn)e jkωndωn

One problem that jumps out that periodic signals, eg. sinusoids, are neither abso-
lutely summable nor of finite energy which means that DTFT can not exist for these
signals. Discrete Time Fourier Series is defined for periodic signal xp(k).

xp(k) =
N−1

∑
n=0

cne
j2πnk

N
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where the complex exponential e
j2πnk

N is periodic in both k and n with period N.
cn is known as the spectrum of the signal and , because of periodicity of n ,k and
Nyquist sampling rate, it is given by

cn =
1
N ∑

k=0
N−1xp(k)e−

j2πnk
N

It should be noted that both analysis and synthesis equations of DTFS are finite
summations which makes it suitable for digital implementation with only problem
being it is only defined for periodic signals which makes its implementation tricky
and leads us to Discrete Fourier Transform

1.5.3 Discrete Fourier Transform

Discrete Fourier Transform is a mapping of N-sample time domain signal to N-
sample frequency domain signal. Signals in either or both domain can be complex
so it is a CN ↔ CN mapping. The Discrete Fourier Transform of a signal x(k) is
given by

X(n) =
N−1

∑
k=0

x(k)e
− j2πkn

N

for n ∈ [0,1, ...,N−1]
The synthesis equation for DFT is known as Inverse Discrete Fourier Transform

and is given by

x(k) =
1
N

N−1

∑
n=0

X(n)e
j2πkn

N

for k ∈ [0,1, ...,N−1]
Unlike DTFS, DFT assumes periodicity and we don’t have to prove periodicity

of a given signal before computing its transform which makes things significantly
easier. One of the most important property of DFT is that it is orthogonal. DFT’s
basis functions e

− j2πkn
N form a 2D orthogonal matrix. This property is utilized in

numerous signal processing and digital communications applications.

1.5.4 Fast Fourier Transform

One issue with DFT is that it is computationally intensive for large values of N.

X(n) =
N−1

∑
k=0

x(k)e
− j2πkn

N
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If you look at the DFT equation, we need N2 complex multiplication and approxi-
mately N2 addition operations in order to compute X(n) and this may get unwieldy
for large values of N. Fast Fourier Transform is an algorithm (there are many algo-
rithms actually) that makes DFT computation faster. A simple introduction follows.
Let us consider a N-point DFT where N = 2n. We can partition x(k) into even and
odd terms xe(k) and xo(k) of length N/2 each. xe(k) = x(2k) are even terms and
xo(k) = x(2k+1) are odd terms.

Taking DFT of x(k)

X(n) =
N−1

∑
k=0

x(k)e
− j2πkn

N

X(n) =
N/2−1

∑
k=0

x(2k)e
− j2π2kn

N +
N/2−1

∑
k=0

x(2k+1)e
− j2π(2k+1)n

N

e
− j2π2kn

N in equation above are basis functions of a N-point DFT but since each
part of the signal is being computed for N/2-point DFT, the equations can be re-
written as

X(n) =
N/2−1

∑
k=0

x(2k)e
− j2πkn

N/2 +
N/2−1

∑
k=0

x(2k+1)e
− jπn
N/2 e

− j2πkn
N/2

It can be seen that above equation represents sum of two N/2 DFTs with second

one having a “twiddle” factor of e
− jπn
N/2 . The computation needed for this configura-

tion. ,excluding twiddle factor multiplication, is, therefore 2(N/2)2 = N2

2 which is
roughly half of original N-point DFT. We can similarly keep halving the signal to
the point where only N log2(N) computations are needed. As can be seen, for large
values of N FFT algorithm is far superior to original DFT and is an essential part of
any engineering and mathematical toolbox.
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Chapter 2
Mathematics

Abstract To be completed

2.1 Hilbert Space

2.1.1 Banach Space

Before we define Hilbert space, it is helpful to define normed linear spaces and
Banach Spaces.

A vector space X is called normed linear space if for each element x ∈ X there is
a number ‖x‖ called norm such that following conditions are satisfied

1. ‖x‖ ≥ 0 with ‖x‖= 0 if and only if x = 0
2. ‖cx‖= |c|‖x‖ for a scalar c
3. ‖x+ y‖ ≤ ‖x‖+‖y‖
Convergence and Completeness condition: Let X be a normed linear space
1. A sequence of vectors xn converges to x ∈ X if limn→∞ ‖x−xn‖= 0. Putting it

in a different way, if ∀ε > 0, ∃N > 0,∀n≥ N ‖x− xn‖> ε

2. Cauchy Sequence: A vector sequence xn is Cauchy if limm,n→∞ ‖xm−xn‖= 0.
Putting it in a different way, if ∀ε > 0, ∃N > 0,∀m,n≥ N ‖xm− xn‖> ε

3. We say that X is complete if every Cauchy sequence in (X) is a convergent
sequence. A complete normed linear space is called a BANACH SPACE.

2.1.2 Hilbert Space

A vector space H is called a Hilbert space if for each pair (x,y) of elements in the
space H there is a unique number called inner product, denoted by < x,y > ,subject
to following three conditions

17
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1. Linearity :
< αx+βy,z >= α < x,z >+β < y,z >

where x,y,z ∈ H and α,β ∈C
2. Conjugated linearity: < x,y >=< y,x >
3. (< x,x >)> 0 for x 6= 0

2.1.2.1 Properties of Hilbert Space

1. Norm: For an element x ∈ H , the norm is given by

‖x‖=
√
< x,x >

2. Cauchy-Schwartz Inequality holds for any elements x,y ∈ H

|< x,y > | ≤ ‖x‖‖y‖

3. Orthogonality: Vectors x and y are said to be orthogonal if < x,y >= 0. Or-
thogonality is written as x⊥y

Euclidean Pythagoran theorem holds in Hilbert Space

x⊥y⇒‖x+ y‖2 = ‖x‖2 +‖y‖2

2.1.2.2 Operators on Hilbert Spaces

Adjoint Operator:
A linear operator U∗ : H2→H1 is said to be adjoint of the operator U : H1→H2

when

<Ux,y >H2=< x,U∗y >H1

for every x ∈ H1 and every y ∈ H2
Self-Adjoint Operator: If U =U∗ then U is called self-adjoint operator.
Unitary Operator: UU∗ =U∗U = I

2.2 Bases and Frames

2.2.1 Bases

Definition: Consider a set of vectors {ek}∞
k=1 in H

1. This set is a basis in H if for each value of f ∈H there is a set of unique scalars
c f

k such that
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f =
∞

∑
k=1

c f
k ek

2. The basis {ek}∞
k=1 is an orthonormal basis if it is an orthonormal system

< ek,e j >= δk, j

2.2.1.1 Orthonormal Basis properties

1. f = ∑
∞
k=1 < f ,ek > ek , ∀ f ∈ H

2. < f ,g >= ∑
∞
k=1 < f ,ek >< ek,g > , ∀ f ,g ∈ H

3. span{ek}∞
k=1 = H

4. ∑
∞
k=1 |< f ,ek > |2 = ‖ f‖2, ∀ f ∈ H

5. If < f ,ek >= 0 then f = 0

2.2.1.2 Biorthogonal Bases

Definition: Sets of vectors {ẽk}∞
k=1 and {ek}∞

k=1 constitute biorthogonal bases in H
if

1. ∀k, j ∈ Z, < ek, ẽ j >= δk, j
2. For any f ∈ H there exist A,B > 0 such that

A‖ f‖2 ≤∑
k
|< f ,ek > |2 ≤ B‖ f‖2

1
B
‖ f‖2 ≤∑

k
|< f , ẽk > |2 ≤

1
A
‖ f‖2

Bases that satisfy the above two equations are called Riesz Bases. f ∈ H can be
expanded as

f =
∞

∑
k=1

< f ,ek > ẽk =
∞

∑
k=1

< f , ẽk > ek

2.2.1.3 Limitations of Bases or why we need Frames

Bases are characterized by their expansion property, ie. any function f ∈ H can
be expressed as a linear combination of basis vectors ek that span H. However,
it is possible to expand a function f ∈ H as a linear combination of another set
of vectors φ which may not be a basis in H. The representation in this case may
be redundant but it may provide additional flexibility which may be a good given
specific applications. Another problem with basis is that they may be difficult to
construct and a small change in implementing one vector in the basis may destroy
the basis so having extra vectors in a redundant expansion may not be such a bad
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idea. In other applications, as in image compression, we may not want to keep all
the coefficients of signal expansion with a set of given vectors so it is quite possible
that frames may be able to do the job instead of bases which need more tedious
construction.

2.2.2 Frames

Definition: Consider a set of vectors {φk}∞
k=1 ∈ H and that there exist constants

A,B > 0. φk is a frame in H if

A‖ f‖2 ≤
∞

∑
k=1
|< f ,φk > |2 ≤ B‖ f‖2,∀ f ∈ H

If A = B then the frame is called a Tight Frame.
If vectors {φk}∞

k=1 ∈ H are linearly independent then the frame is non-redundant
and is called a Riesz Basis.

Let {φk}∞
k=1 ∈H be a frame with frame operator S and bounds A,B then following

is true
1. S is bounded, invertible, adjoint and positive.
2. {S−1φk}∞

k=1 ∈ H is a frame with frame operator S−1 and frame bounds
A−1,B−1.

3. If A,B are optimal frame bounds for {φk}∞
k=1 then A−1,B−1 are optimal frame

bounds for {S−1φk}∞
k=1.

4. f = ∑
∞
k=1 < f ,S−1φk > φk,∀ f ∈ H and

f = ∑
∞
k=1 < f ,φk > S−1φk,∀ f ∈ H

Both converge for all f ∈ H.
Frame Operators and Pseudo-Inverse : Let U be the frame operator associated

with the frame {φk}∞
k=1 ∈ H and let U : H → H be bounded with closed range

then {Uφk}∞
k=1 is a frame sequence with frame bounds A‖U†‖−2 and B‖U‖2. U†

is known as the pseudo inverse of the frame operator U and is defined as

U† = (U∗U)−1U∗

where U∗ is the adjoint of U . As can be seen from the definition, U† is the left
inverse.

Dual Frames: Assume that {φk}∞
k=1 ∈H is an overcomplete frame then there exist

frames {χk}∞
k=1 ∈H for which f = ∑

∞
k=1 < f ,χk > φk,∀ f ∈H . Following holds for

dual frames phik and chik
1. f = ∑

∞
k=1 < f ,χk > φk,∀ f ∈ H

2. f = ∑
∞
k=1 < f ,φk > χk,∀ f ∈ H

3. < f ,g >= ∑
∞
k=1 < f ,φk >< χk,g >,∀ f ,g ∈ H
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2.3 Approximation Theory

To motivate the concepts of approximation, consider a subspace VN ⊂ H and con-
sider a function f ∈H. An orthogonal projection of f on VN is given by fN . Using a
set of N-vector biorthogonal basis we can recover the signal fN in this subspace.

fN(t) =
N−1

∑
n=0

< f ,φn > φ̃n

Now the signal constructed using N-vector biorthogonal basis is usually not ex-
actly the same as f . Therefore, we compute the approximation error as ‖ f − fN‖.
To give a formal definition of approximation error, consider an orthonormal basis
{ek}∞

k=0 in L2. The function f can, therefore be fully reconstructed using this basis.

f =
∞

∑
k=0

< f ,ek > ek

However, if we are using N-vectors of this orthonormal basis to reconstruct f
then the approximation difference is given by

f − fN =
∞

∑
k=0

< f ,ek > ek−
N−1

∑
k=0

< f ,ek > ek =
∞

∑
k=N

< f ,ek > ek

and the approximation error is

eN = ‖ f − fN‖2 =
∞

∑
k=N
|< f ,ek > |2

Few Observations
1. As the value of N increases, the error decreases.

lim
n→∞
‖ f − fN‖= 0

2. Since (eN = ∑
∞
k=N | < f ,ek > |2 , the decay rate of approximation error is

proportional to decay rate of |< f ,ek > | as k increases.
3. Approximation error depends on the choice of N basis vectors.

2.3.0.1 Linear Fourier Approximations

ei2πmt is an orthonormal basis in L2[0,1]. The signal f can be approximated using
N-vector Fourier basis as

fN(t) =
m=N

2

∑
m=−N

2

< f (u),ei2πmu > ei2πmt
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Fourier Approximation error is, therefore, given by

e f ,N = f (t)− fN(t) =
m=−N

2

∑
m=−∞

< f (u),ei2πmu > ei2πmt +
m=∞

∑
m=N

2

< f (u),ei2πmu > ei2πmt

It should be noted that linear Fourier approximation has a low frequency bias
as the approximate signal fN(t) is constructed using low frequency components. A
signal rich in high frequency components will see substantial degradation if Linear
Fourier Approximation is used.

2.3.1 Wavelet Approximation Error

Faster the decay of approximation error, fewer basis functions are needed to ap-
proximate f . In the case of wavelets, approximation error rate decay depends on the
number of low pass filter zeros at ω = π . More zeros equate to smoother wavelets,
the faster the expansion coefficients decay to zero.

Consider a multiresolution space VJ where VJ =V0⊕W0⊕W1⊕ .......⊕WJ−1. The
space VJ is spanned by scaling functions φ(t−k) and wavelets {ψ(2 jt−k)}J−1

j=0 . The
projection of f in this space is given by

fN = ∑
n
< f ,φJ,n > φJ,n

or,

fN = ∑
n
< f ,φ0,n > φ0,n +

J−1

∑
j=0

< f ,ψ j,n > ψ j,n

Now generalizing this equation over entire L2 space and assuming the smallest
scale is 0 , we get

f = ∑
n
< f ,φ0,n > φ0,n +

∞

∑
j=0

< f ,ψ j,n > ψ j,n

The approximation difference is, therefore,

f − fN =
∞

∑
j=J

< f ,ψ j,n > ψ j,n

and linear approximation error is

ew,N = ‖ f − fN‖2 =
∞

∑
j=J
|< f ,ψ j,n > |2
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2.3.1.1 Linear Approximation Example: Fourier vs Db2 Wavelet

A N = 256 length piecewise regular signal is used in these computations. The matlab
script is as follows

function f=waveapprox

% Linear Fourier and Wavelet Approximations using 100 coefficients out of 256
f = load_signal(’Piece-Regular’, 256); % Using this Wavelab function to
% generate a piecewise signal
x=f’;% Preparing signal for wt.m
% Fourier Linear Aproximation using 100 coefficients
figure(1);plot(x),title(’Piecewise Regular Signal’);
yf=fft(x);
yf_shift=fftshift(yf);
% plot(abs(yf_shift));
% Signal reconstruction using all coefficients
% oup_f=ifft(yf);
% figure(2)
% plot(real(oup_f));

% Signal Reconstruction using n=100 coefficients

% Linear Fourier Approximation
n=100;
N=length(yf_shift);
yf_appx=[zeros(1,N/2-n/2),yf_shift(N/2-n/2+1:N/2+n/2),zeros(1,N/2-n/2)]
yf_appx=fftshift(yf_appx);
oup_f=ifft(yf_appx);
figure(2)
plot(real(oup_f));title(’ Linear Fourier Approximation 100/256 coeffs’);

% Linear Wavelet Approximation

% Signal is decomposed to level-4 and first 100 coefficients are chosen.
% Using Db2 wavelets
[lp,hp,lp2,hp2]=wfilters(’db2’);
J=4;
[cA,cD,dcoeff]=wt_test(x,J,lp,hp);

% Choosing 100 coefficients
% cA-16, dcoeff(4,:)-16, dcoeff(3,:)-32, dcoeff(2,:) - Choose first 36
% coefficients while all coefficients of dcoeff(1,:) are set to zero.
dcoeff(1,:)=zeros(size(dcoeff(1,:)));
dcoeff(2,:)=[dcoeff(2,1:36),zeros(1,length(dcoeff(2,:))-36)];
figure(3)
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yw=iwt_test(cA,dcoeff,J,lp2,hp2);
plot(yw),title(’Linear Wavelet Approximtion 100/256 coeffs’);
coeff2=[cA,dcoeff(4,1:16),dcoeff(3,1:32),dcoeff(2,1:64),dcoeff(1,:)]

Fourier Linear Approximation computation is pretty straightforward. 256 point
FFT is computed and only first 100 coefficients( 50 on either side of ω = 0) corre-
sponding to lowest frequencies are retained.We reconstruct the signal (Inverse FFT)
using only these 100 coefficients while setting the rest equal to zero.

Fig. 2.1 N=256 Piecewise Regular Signal

The output signal is plotted below.
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Fig. 2.2 100 coefficients Linear Fourier Approximation

Linear Wavelet Approximation is a bit more involved. Firstly, the input signal is
decomposed to a scale J.In this demo, J is 4. Then we retain 100 coefficients starting
from the coarsest scale, ie., we start with approximation and detail coefficients at the
coarsest scale, then we choose detail coefficients from the next finest scale and so
on. In this example, approximation and detail coefficients at the coarsest scale have
16 coefficients each. The next finer scale has 32 detail coefficients followed by 64
at the following one and so on. Since we are choosing 100 coefficients , we retain
only 36(= 100− 16− 16− 32). The rest of the coefficients are set to zero and the
inverse DWT is computed in order to reconstruct the signal.The output signal is
plotted below
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Fig. 2.3 100 coefficients Linear Wavelet Approximation

It can be seen that Wavelet approximation returns a better result with this kind of
signal.While linear fourier approximation has a low-frequency bias wavelets tend to
capture discontinuities and signal fluctuations at almost every scale which results in
better approximation performance.

2.4 Non-Linear Approximation

In data compression applications, a good approximation error rate decay is crucial
and it makes sense to utilize wavelet property of returning large coefficients at dis-
continuities and signal fluctuations. For an orthonormal basis ek, the approximation
error is given by

eN = ‖ f − fN‖2 =
∞

∑
k=N
|< f ,ek > |2

In linear case, we choose first M coefficients ,eg. in Fourier domain we go with
lowest M/2 positive and negative frequencies and in wavelet domain we choose
first M coefficients starting with the coarsest scale. In Nonlinear case,we go with M
largest coefficients by choosing the M largest inner products. So instead of dividing
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the coefficient space linearly, we do an nonlinear division by allocating coefficients
in two sets denoted by ,say, Im which contains the M largest coefficients and a set
which contains all other coefficients.

|< f ,em > | ≥ |< f ,en > |,∀m ∈ Im,∀n /∈ Im

The best nonlinear approximation is ,therefore, given by

fM = ∑
m∈Im

< f ,em > em

for an orthonormal basis. The approximation error is given as before

eM = ‖ f − fM‖2 = ∑
m/∈Im

|< f ,em > |2

2.4.0.2 Non-Linear Approximation Error Decay

Let us consider Fourier Transform first. If the function is smooth, Fourier trans-
forms do a good job as most energy is concentrated in the lower frequencies and
there is not much difference in using Linear and Non-linear Fourier approximation.
If the function is piece-wise smooth, ie. it has discontinuities at points tk, fourier
approximation does not give us appreciably better results as largest coefficients are
clustered at the lowest frequencies that we pick in linear case anyway.It has been
proven that approximation error rate decays as 1/M in Fourier case.

Wavelets return large coefficients value at singularities, discontinuities etc. at
every scale. If we are using linear approximation, we start with coarse scales and
move to the finer scales but as is obvious quite a few large coefficients are ignored
using this method. Let us suppose that there are M large coefficients distributed over
M scales. If we are using non-linear approximation we can conceivably pick out all
of these M coefficients instead of picking M coefficients across only J < M scales.
The amplitude of wavelet coefficient is proportional to 2− j/2 at scale j. So if we
stop at scale J < M using linear approximation, the last coefficients picked are of
the order 2−J/2 while the largest coefficient not selected has an amplitude in the
range of 2−(J+1)/2. However, if we are using non-linear approximation, the largest
coefficient not picked will have the order 2−(M+1)/2 so we see that in non-linear case
, the error is decaying exponentially.

This can be demonstrated in Matlab using the following script

function f=nlapprox

% Linear Fourier and Wavelet Approximations using 100
%coefficients out of 256
f = load_signal(’Piece-Regular’, 256); % Using this Wavelab
% function to generate a piecewise signal
x=f’;% Preparing signal for wt.m
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% Fourier Nonlinear Aproximation using 100 coefficients
figure(1);plot(x),title(’Piecewise Regular Signal’);
yf=fft(x);
yf_shift=fftshift(yf);
% plot(abs(yf_shift));
% Signal reconstruction using all coeffiecients
% oup_f=ifft(yf);
% figure(2)
% plot(real(oup_f));

% Signal Reconstruction using n=100 coefficients

% Nonlinear Fourier Approximation
n=100;
N=length(yf_shift);
tf=findthresh(yf_shift,n);
yf_shift(abs(yf_shift)<tf)=0;
yf_appx=fftshift(yf_shift);
oup_f=ifft(yf_appx);
figure(2)
plot(real(oup_f));
title(’ Nonlinear Fourier Approximation 100/256 coeffs’);

% Linear Wavelet Approximation

% Signal is decomposed to level-4 and signal
% is thresholded to choose 100 coefficients
% Using Db2 wavelets
[lp,hp,lp2,hp2]=wfilters(’db2’);
J=4;
[cA,cD,dcoeff]=wt_test(x,J,lp,hp);

% Choosing 100 coefficients
% All 256 coefficients are processed to find the
%threshold and the largest 100 coefficients are chosen
% while those below the thresold are set to zero.
coeff2=[cA,dcoeff(4,1:16),dcoeff(3,1:32),....

dcoeff(2,1:64),dcoeff(1,1:128)];
tw=findthresh(coeff2,n);
coeff2(abs(coeff2)<tw)=0;
cA=coeff2(1:16);
dcoeff(4,1:16)=coeff2(16+1:2*16);
dcoeff(3,1:32)=coeff2(32+1:2*32);
dcoeff(2,1:64)=coeff2(64+1:2*64);
dcoeff(1,:)=coeff2(128+1:2*128);



2.4 Non-Linear Approximation 29

figure(3)
yw=iwt_test(cA,dcoeff,J,lp2,hp2);
plot(yw),title(’Nonlinear Wavelet Approximtion 100/256 coeffs’);

Fig. 2.4 N=256 Piecewise Regular Signal

As can be seen from the program , a threshold is chosen depending on the number
of approximation coefficients and all coefficients that fall below this threshold are
set to zero. We calculate Inverse FFT and Inverse DWT based on these new values of
coefficients. While Nonlinear Fourier Approximation doesn’t show much improve-
ment over its linear counterpart but ,as expected Nonlinear Wavelet approximation
shows dramatic improvement over linear Wavelet Approximation.
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Fig. 2.5 100 coefficients Nonlinear Fourier Approximation
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Fig. 2.6 100 coefficients Nonlinear Wavelet Approximation
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Chapter 3
Wavelets and Wavelet Transforms

Abstract Each chapter should be preceded by an abstract (10–15 lines long) that
summarizes the content. The abstract will appear online at www.SpringerLink.com
and be available with unrestricted access. This allows unregistered users to read the
abstract as a teaser for the complete chapter. As a general rule the abstracts will not
appear in the printed version of your book unless it is the style of your particular
book or that of the series to which your book belongs.

Please use the ’starred’ version of the new Springer abstract command for
typesetting the text of the online abstracts (cf. source file of this chapter template
abstract) and include them with the source files of your manuscript. Use the
plain abstract command if the abstract is also to appear in the printed version of
the book.

3.1 Introduction

Wavelets are normalized,finite, short-duration, zero mean functions.∫
∞

−∞

ψ(t)dt = 0

ψ(t) is also known as Mother wavelet as it can be dilated and translated to
yield Child wavelets. Function to be analyzed is then processed with these Children
wavelets to yield wavelet coefficients.An example of a wavelet function is shown
below. It is a Daubechies2 wavelet generated using Matlab.

33



34 3 Wavelets and Wavelet Transforms

Fig. 3.1 Daubechies2 Wavelet

The Children wavelets are given by ψk,s(t) where the mother wavelet is scaled
by s and translated by k.

ψk,s(t) =
1√
s

ψ(
t− k

s
)

The Wavelet Transform Wf of a function f(t) is computed by taking the inner product
of function f(t) with the translated and dilated versions of mother wavelet.

W f =< f ,ψk,s >=
∫

∞

−∞

f (t)
1√
s

ψ
∗(

t− k
s

)dt

For small values of s, ψk,s will be of shorter duration and higher frequency. For large
value of s, ψk,s it will be more spread out in time and will consist of low frequencies.
The fact that wavelet functions are bandpass functions ensures that we cannot cover
the entire frequency spectrum just with the wavelet functions.To solve this problem,
scaling functions φ(t) are introduced. They are complement of wavelet functions
and correspond to low pass filter in signal processing terms.
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Fig. 3.2 Daubechies2 Scaling Function

Wavelet Transform, so defined, happens to be computationally unwieldy as trans-
lations and dilations can take any value. A better approach is to discretize translation
and dilation steps. Mathematically, let s = am and k = amn where m and n are in-
tegers. Below is an example of Daubechies2 wavelet being scaled by a = 1/2.The
scale a is inversely proportional to frequency. Small scale values [ 0 < a < 1 ] cor-
respond to high frequency while large scale values [ a > 1 ] to low frequencies. The
second figure shows the same mother wavelet being shifted by b = 20.

Fig. 3.3 Wavelet Scaling Demo
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Fig. 3.4 Wavelet Shift Demo

ψm,n(t) = a
−m
2 ψ(a−mt−n)

3.1.1 Wavelet properties

1. Vanishing Moments: A wavelet of n vanishing moments is orthogonal to poly-
nomials of degree n− 1. All polynomials of degree less than n will get filtered out
when they are processed by wavelet ψ(t)∫

∞

−∞

tk
ψ(t)dt = 0, f or(0≤ k < n)

For a given scaling function and wavelet derived from low pass filter h(n), num-
ber of vanishing moments depends solely on number of zeros at ω = π . In other
words, its transfer function and its n−1 derivatives in frequency( or z) domain van-
ish at ω = π(z =−1).

2. Regularity: of a wavelet is related to differentiability of a wavelet in the fre-
quency domain. More regularity corresponds to smoother wavelet and more vanish-
ing moments.Scaling filter is N regular if it has N zeros at ω = π . For more on local
and global regularity, refer to books by Daubechies and Mallat.

3. Admissibility condition is given by∫
∞

−∞

|ψ(ω)|2

|ω|
dω < ∞

Wavelets being band pass functions is an implication of admissibility condition.
4. Compact Support: Wavelets should ideally have compact support. Like other

properties, this property too depends on the low pass filter h.
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5. Symmetry: Certain wavelets , eg. biorthogonal wavelets , are designed to be
symmetric. These are specially useful in image processing applications.

6. Orthogonality: With the exception of Haar wavelets, wavelets can’t be both
symmetric and orthogonal so the choice usually comes down to specific applications
and requirements.

3.2 Discrete Wavelet Transform

Discrete Wavelet Transform was introduced previously with translation and dilation
steps being uniformly discretized.

ψm,n(t) = a
−m
2 ψ(a−mt−n)

To make computations simpler and to ensure perfect or near-perfect reconstruc-
tion, Dyadic Wavelet Transform is utilized. In the dyadic case {a} is chosen to be
equal to 2 which yields the following translation- dilation equation.

ψ j,n(x) = 2
− j
2 ψ(2− jx−n)

where j gives the level of scale and n gives the translation where j,n ∈ Z. As noted
previously, wavelet functions ψ(t) are bandpass so even with dyadic scaling they
cannot cover the entire spectrum so low pass scaling functions φ(t) are introduced.
Therefore, wavelet coefficients of a function over scales j0 < j < J are then given
by

W f =< f ,φ j0,n >+
J

∑
j= j0

< f ,ψ j,n >

Let there be functions ˜φ j0,n and ˜ψ j,n such that function f (x) can be reconstructed
from its wavelet coefficients using following equation

f (x) = ∑
n
< f ,φ j0,n >

˜φ j0,n(x)+∑
n

J

∑
j= j0

< f ,ψ j,n > ˜ψ j,n(x)

The ease with which dyadic Inverse Discrete Wavelet Transform (IDWT) can
be constructed makes it ideal for a number of signal processing and image process-
ing applications where reconstruction is absolutely critical(eg., Image compression).
More on Inverse DWT using filter banks in next few chapters when this topic will
be revisited.
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3.2.1 DWT Implementation

DWT is implemented using decimated filter banks and this implementation is a ma-
jor reason why DWT has become so popular in DSP and other fields. The concepts
behind this implementation will be developed over next few sections but we’ll start
with the implementation here with results displayed using Matlab.

Fig. 3.5 Iterated Filter Bank(Analysis

Fig. 3.6 Iterated Filter Bank(Synthesis)

The figures show DWT and Inverse DWT implementations using iterated and
decimated filter banks. Consider DWT, at each stage the signal is convolved with
low pass and high pass filters and the result is decimated by 2. Decimation is nec-
essary in order to keep the system non-redundant as the number of coefficients will,
otherwise, double at every stage. The downside is that decimation introduces shift
variance.More on this later. For now, we’ll pass a signal through the filter bank
shown in the first signal and analyze it at every stage. Let us say that the signal is
decomposed through 4-levels of the filter banks. At the fourth stage, we have two
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sets of coefficients- Approximation coefficients corresponding to low pass filter and
Detail coefficients corresponding to high pass filtering. Since the low pass approx-
imation coefficients at stages 1 through 3 are decomposed we’ll only consider the
detail coefficients at these three stages.At every stage, higher frequency components
are peeled off the signal and we are left with a smoother version of the original sig-
nal. The analysis is shown in figure.

Fig. 3.7 DWT Analysis of a given signal

3.3 Multiresolution Analysis

Mother Wavelet ψ(t) is an orthonormal wavelet if its translates and dilates are or-
thonormal under the inner product.

< ψ j,k,ψl,m >=
∫

∞

−∞

ψ j,k(t)ψ∗l,m(t)dt = δ j,lδk,m

where j,k, l,m ∈ Z and δ is the Kronecker delta function. Such a wavelet system is
self-dual,ie., for a given function f (x)

f (x) = ∑
j
∑
k
< f ,ψ j,k > ψ j,k(x)

The idea of Multiresolution is to decompose a signal f (t) ∈ L2(R) such that
orthogonal projections of f (t) given by f j “live” in the space Vj.Vj and Wj are
complementary subspaces with Wj being the difference between Vj and Vj+1.

Vj+1 =Vj⊕Wj
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Multiresolution approximation, as defined by Mallat and Meyer, has the follow-
ing properties-

1. Vj ⊂Vj+1 A function in subspace j is in all the finer subspaces. In other words,
if we know a signal f j(t) at subspace Vj, we can obtain ts coarse approximation
using MRA. Think of a signal being decomposed using an iterated chain of comple-
mentary low pass and high pass filters. At every step we obtain a low pass and high
pass version of the signal from the previous step. However, the low pass signal in
step two is contained in the signal from the step one.

2. f (t) ∈ V0 ⇔ f (t− k) ∈ V0 This is the translation (shift) invariant property of
the subspace. A signal in a given subspace , if translated by k ∈ Z is still in that
subspace. This property is valid for all subspaces.

3. f (t) ∈Vj ⇔ f (2t) ∈Vj+1 This is the scale invariant property of the Multires-
olution analysis. In frequency domain terms, f (2t) contains 2X highest frequency
compared to that contained in f (t). Using iterated filter bank example with a low
pass filter that halves the frequencies in every step, it becomes clear that moving
back one step in each step of the filter chain doubles the highest frequency content.

Fig. 3.8 Multiresolution Analysis

4.
⋂

j→−∞ Vj = {0} As we move to lower subspaces, the space occupied by Vj
shrinks until it becomes nearly zero.

5.
⋃

j→∞ Vj = L2(R) Union of all subspaces as j → ∞ encompasses the whole
L2(R) space.

3.3.1 Dilation Equation

Let f0(t) and f1(t) be the projections of signal f (t) associated with subspaces V0
and V1 respectively. The difference of these two projections “lives” in the comple-
mentary Wavelet space W0.
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According to 1, V0 ⊂V1. Let φ(t) and ψ(t) be the scaling and wavelet functions
associated with subspaces V0 and W0. It follows from 1 that φ(t) is contained in V1
and can be expressed in terms of φ(2t).

φ(t) = 2
1
2 ∑

k
h(k)φ(2t− k)

The term 2
1
2 comes from the definition of basis function at scale j = 1. The equa-

tion above is known as the dilation equation and forms the bridge between wavelets
and filterbanks. h(k) corresponds to the low pass filter that is associated with the
scaling function. If g(k) is the complementary high pass filter in this orthogonal
filterbank then the Wavelet equation can be expressed as

ψ(t) = 2
1
2 ∑

k
g(k)φ(2t− k)

The wavelet equation written above follows from the fact that W0 also nests inside
V1 and can be obtained by using the similar process as used in the scaling function
case.

3.3.2 Wavelet Transform Algorithm

Again from 1, ψ j,k(t) and φ j,k(t) can be represented by φ j+1,k(t). Let S j,k and Wj,k
be scaling and wavelet coefficients at scale j for a given signal f (t).

S j,k =
∫

∞

−∞

f (t)φ j,k(t)dt

Wj,k =
∫

∞

−∞

f (t)ψ j,k(t)dt

Using MRA properties,

∑S j+1,kφ j+1,k(t) = ∑Wj,kψ j,k(t)+∑S j,kφ j,k(t)

as signal projection f j+1(t) = f j(t)+∆ f j(t) where ∆ f j(t) is the signal projection
in the wavelet space. We shift dilation and wavelet equations by v and generalize to
scale j.

φ(2 jt− v) = 2
1
2 ∑

k
h(k)φ(2 j+1t−2v− k)

ψ(2 jt− v) = 2
1
2 ∑

k
g(k)φ(2 j+1t−2v− k)

Substituting l = 2v+ k and integrating by multiplying both equations by f (t) gives
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∞

−∞

f (t)φ j,vdt = 2
1
2 ∑

k
h(l−2v)

∫
∞

−∞

f (t)φ j+1,l(t)dt

∫
∞

−∞

f (t)ψ j,vdt = 2
1
2 ∑

k
g(l−2v)

∫
∞

−∞

f (t)φ j+1,l(t)dt

Using values of S j,k and Wj,k from above yields

S j,v = 2
1
2 ∑

k
h(l−2v)S j+1,l

Wj,v = 2
1
2 ∑

k
g(l−2v)S j+1,l

where h(l−2v) and g(l−2v) can be thought of as time-reversed and decimated
by 2 low pass and high pass filters. This is the fast wavelet transform algorithm.

Fig. 3.9 Fast Wavelet Transform

The Inverse Fast Wavelet transform is simply inverse of the FWT and can be eas-
ily shown using same equations. More on Filterbanks and Wavelets will be covered
in next chapter.

3.4 Filter Banks and Wavelets

As mentioned in the previous chapter Discrete Wavelet Transform can be obtained
by iterating over low pass filters of a given filter bank.
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Fig. 3.10 Iterated Filter Bank(Analysis

Fig. 3.11 Iterated Filter Bank(Synthesis)

Let us consider one stage filtering and downsampling in the analysis filter bank.
Downsampling is needed in order to get rid of redundancy as , say, a 1000 point
input sample results in two 1000 point outputs after filtering. We downsample by
two in order to keep the signal samples at 1000. Similarly at the synthesis bank,
we first upsample the wavelet coefficients by 2 before filtering. Filter have to be
designed appropriately in order to ensure that the signal reconstruction is perfect.
Filter choices also effect wavelet shape as will be demonstrated shortly.

Recall the dilation and wavelet equations.

φ(t) = 2∑
k

h(k)φ(2t− k)

ψ(t) = 2∑
k

g(k)φ(2t− k)

If we iterate over these equations then the iteration can be written as
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φ
(i+1)(t) = 2∑

k
h(k)φ (i)(2t− k)

Keep in mind that both wavelet and dilation equations will end up getting iterated
over φ(t) where φ (0)(t) is the box function [1,1]. If the functions converge then we
should be able to get wavelet and scaling functions in few steps. In the example
below Daubechies’s db2 wavelet and scaling filters were iterated to yield wavelets
and scaling functions in five iterations.

Fig. 3.12 Db2 4-tap Low Pass and High pass Filters
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Fig. 3.13 Scaling and Wavelet Function Iteration 1

Fig. 3.14 Scaling and Wavelet Function Iteration 2
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Fig. 3.15 Scaling and Wavelet Function Iteration 3

Fig. 3.16 Scaling and Wavelet Function Iteration 4
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Fig. 3.17 Scaling and Wavelet Function Iteration 5

3.4.1 Orthonormal Discrete Wavelet Transform

In terms of scaling and wavelet functions we have three orthonormality equations at
a given scale j

< φ j,k,φ j,l >=
∫

∞

−∞

2
j
2 φ(2 jt− k)2

j
2 φ
∗(2 jt− l)dt = δ (k− l)

< ψ j,k,ψ j,l >=
∫

∞

−∞

2
j
2 ψ(2 jt− k)2

j
2 ψ
∗(2 jt− l)dt = δ (k− l)

< φ j,k,ψ j,l >=
∫

∞

−∞

2
j
2 φ(2 jt− k)2

j
2 ψ
∗(2 jt− l)dt = 0

Derivation is straightforward. If h1 and g1 are low pass and high pass filters re-
spectively then in an orthonormal filter bank, their inner product is zero. Use dilation
equations, take inner product of scaling and wavelet functions. Notice that it can be
expressed in forms of h1 and g1and that these two are orthonormal filters satisfying
orthonormality properties.

Discrete Wavelet Transform requires that four filters be designed- two for anal-
ysis bank and the other two for synthesis bank. However, perfect reconstruction
imposes conditions on filters such that no more than two filters are enough to design
a DWT Multiresolution Analysis. In case of Orthogonal DWT, only one filter is suf-
ficient as the other three filters can be obtained from the prototypical low pass filter.
More on this will follow after discussion of Biorthogonal wavelets. The analysis
high pass filter is the mirror image (alternate flip) of low pass filter while synthesis
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filters are transposes of analysis filters.For a given N +1-tap low pass analysis filter
H1(z), the other three filters are

High Pass Analysis Filter H2(z) =−z−NH1(z)
Low Pass Synthesis Filter G1(z) = H2(−z)
High pass Synthesis Filter G2(z) =−H1(−z)

3.4.2 Biorthogonal Discrete Wavelet Transform

We get biorthogonal wavelets from biorthogonal filters. Biorthogonal analysis filters
are not orthogonal to each other but the analysis filters and synthesis filters are
orthogonal with respect to each other. Consider a two-channel biorthogonal filter
bank.

Fig. 3.18 Two Channel Biorthogonal Filter Bank

In case of orthonormal filter banks we had three orthonormality equations. In
case of biorthogonal filter banks, we have four equations. In filter bank terms, these
four equations are

< h1(n),h2(2k−n)>= δ (k)

< g1(n),g2(2k−n)>= δ (k)

< h1(n),g2(2k−n)>= 0

< g1(n),h2(2k−n)>= 0
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3.4.3 Biorthogonal Multiresolution Analysis

In biorthogonal case, Vj+1 =Vj⊕Wj is still valid but Vj and Wj are not orthogonal
complements. This necessitates introduction of another complementary multireso-
lution space. It is usually denoted by Ṽj and W̃j such that

Ṽj+1 = Ṽj +W̃j

The relationship between “normal” MRA and “Tilde” MRA is crucial as it de-
fines biorthogonality

Ṽj⊥Wj

Vj⊥W̃j

“Tilde” MRA is usually associated with analysis filter bank while the “normal”
MRA is associated with synthesis filter bank. Therefore φ̃ and ψ̃ are analysis scaling
and wavelet functions while φ and ψ are synthesis scaling and wavelet functions,
respectively. We also have two sets of dilation equations in this case.

Analysis Dilation Equations

φ̃(t) = 2∑
k

h̃(k)φ̃(2t− k)

ψ̃(t) = 2∑
k

g̃(k)φ̃(2t− k)

Synthesis Dilation Equations

φ(t) = 2∑
k

h(k)φ(2t− k)

ψ(t) = 2∑
k

g(k)φ(2t− k)

In terms of scaling and wavelet functions we have four biorthogonality equations
at a given scale j

< φ j,k, φ̃ j,l >=
∫

∞

−∞

2
j
2 φ(2 jt− k)2

j
2 φ̃
∗(2 jt− l)dt = δ (k− l)

< ψ j,k, ψ̃ j,l >=
∫

∞

−∞

2
j
2 ψ(2 jt− k)2

j
2 ψ̃
∗(2 jt− l)dt = δ (k− l)

< φ̃ j,k,ψ j,l >=
∫

∞

−∞

2
j
2 φ̃(2 jt− k)2

j
2 ψ
∗(2 jt− l)dt = 0

< ψ̃ j,k,φ j,l >=
∫

∞

−∞

2
j
2 ψ̃(2 jt− k)2

j
2 φ
∗(2 jt− l)dt = 0
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Thee four equations can be proved by plugging dilation equations into the left
hand side (inner products). The decomposition and reconstruction proof is similar
to the orthogonal MRA case.

3.5 Filter Design for Wavelets

For two channel filter banks, perfect reconstruction equations are given by

1
2
(H1(z)H2(z)+G1(z)G2(z)) = z−L

and

1
2
(H1(−z)H2(z)+G1(−z)G2(z)) = 0

First equation is called the no-distortion equation while second one is no aliasing
condition. For filter design we focus mainly on the first equation. H1(z) and H2(z)
are analysis and synthesis low pass filters while G1(z) and G2(z) are high pass filters.
For perfect reconstruction, it is sufficient to design low pass filters and obtain high
pass filters from them.

Let P(z) be the product filter of the two low pass filters.

P(z) = H1(z)H2(z)

Three steps are needed to design the perfect reconstruction filter bank
1. Design Low Pass Filter P(z).
2. Factorize P(z) to find H1(z) and H2(z).
3. Use PR conditions to obtain high pass filters from low pass filters.
Step 3 is trivial once the low pass filters are obtained. Choose H2(z) = G1(−z)

and G2(z) = −H1(−z) for alias cancellation. Plugging this in first PR equation we
get

1
2
(H1(z)H2(z)−H2(−z)H1(−z)) = z−L

P(z)−P(−z) = 2z−L

It can be seen from the equation above that all odd powers of P(z) will cancel
out. If we redefine P(z) := z−LP(z), the equation changes to

z−LP(z)− (−z)−LP(−z) = 2z−L

or,

P(z)+P(−z) = 2
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This is done to center the equation so that the coefficient of the term z0 is non-
zero. Filter P(z) is known as halfband filter. All of its even terms, with the exception
of z0 are zero. When we add P(z) with P(−z) we are left with a constant 2.[ Re-
member that only odd terms will cancel out with the addition so if there is an even
term present it will appear in the output ].Furthermore, P(z) is a product of two low
pass filters.

In orthogonal case,

P(z) = H1(z)H1(z−1) = H1(e jω)H1(e− jω)

which can be seen as an autocorrelation function because in time domain, the
two filters are time reversed versions of each other. eg., 1+az−1 +bz−2 + cz−3 and
1+az1 +bz2 + cz3 have coefficients [1,a,b,c] and [c,b,a,1].

In the case where the two low pass filters are “different” (one cannot be obtained
from other just by reversing the filter order) ,as in biorthogonal filter bank, the prod-
uct P(z) can be seen as a cross-correlation function. It will still be a low pass filter
in both cases.

There are a number of halfband filter design and factorization methods. Daubechies
and Meyer’s methods are more commonly used.

Daubechies Method: Daubechies defined P as 2(1− y)pBp(y) where Bp(y) is a
truncated Binomial polynomial of degree (p−1) and p coefficients.

Bp(y) = (1− y)−p = 1+ py+
p(p+1)

2
y2 + ....+(

2p−2
p−1 )yp−1

The coefficient of yk is (
p+ k−1

k ). The factor (1− y)p has p zeros at y = 1. In

Low Pass filter case, we want zeros at z =−1 or ω = π . Let

y =
(1− e− jω)

2
(1+ e− jω)

2

in order to maintain symmetry

y = (
1− cosω

2
)

which gives

P(ω) = 2(
1+ cosω

2
)p

p−1

∑
k=0

(
p+ k−1

k )(
1− cosω

2
)k

In z-domain this can be written as

P(z) = 2(
1+ z

2
)p(

1+ z−1

2
)p

p−1

∑
k=0

(
p+ k−1

k )(
1− z

2
)k(

1− z−1

2
)k



52 3 Wavelets and Wavelet Transforms

P(z) can be obtained for different values of p. Once we have P(z), the next step
is to factorize it in order to obtain the low pass filters.

Meyer’s Method: It consists of integrating P′(ω) and choosing a value c such
that P(π) = 0.It is given by

P(ω) = 2− c
∫

ω

0
(sin(ω))2p−1dω

Plots of P(ω) for values of p=1,2,3

Fig. 3.19 P(ω) for p=1
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Fig. 3.20 P(ω) for p=2

Fig. 3.21 P(ω) for p=3
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3.5.1 Spectral factorization

Once we have P(z), the next step is to find low pass filters. In the orthogonal case
P(z) = H(z)H(z−1). As seen above P(z) can be re-written as

P(z) = [(1+ z)p(1+ z−1)pQ(z)]

The value of Q(z) comes from binomial expansion and , looking at these equa-
tions, it makes sense to factorize Q(z) as Q(z) = R(z)R(z−1). Daubechies suggested
that H(z) be chosen such that it is minimum phase which will make H(z−1 maxi-
mum phase. Therefore, R(z) must be chosen to be causal and with all its zeros inside
the unit circle. For example, consider the product filter for p=2. Its pole-zero plot as
obtained using Matlab is shown below in figure 11.

Fig. 3.22 Pole zero plot of P(ω) for p=2

There are four zeros at z = −1. For orthogonal filters, we need to assign them
equally to H(z) and H(z−1).

P(z) = (
−1
16

z3 +
9

16
z1 +1+

9
16

z−1 +
9

16
z−3)

This can be expressed as

P(z) =
1
16

(1+ z)2(1+ z−1)2(−z+4− z−1)

As can be seen from the equation and pole-zero plot. This has 4 zeros at z =−1.
The other two zeros are at 2−

√
3 and 2+

√
3. H(z) is assigned the zero inside

the unit circle while H(z−1). Calculating coefficients using roots function of matlab
gives us four coefficients for analysis low pass filter h(n)= [0.3415,0.5915,0.1585,−0.0915].
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The synthesis low pass filter is time reversed h(−n)= [−0.0915,0.1585,0.5915,0.3415].
The analysis and synthesis high pass filters can be calculated by alternate flipping
the low pass coefficients and they are found to be [−0.0915,−0.1585,0.5915,−0.3415]
and [0.3415,−0.5915,0.1585,0.0915]. The scaling and wavelet functions can be
calculated using iteration method. They are shown in figures 12 and 13.

Fig. 3.23 Scaling Function for Db2 wavelets(p=2)
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Fig. 3.24 Wavelet Function for Db2 wavelets(p=2)

3.5.2 Filters for Biorthogonal Wavelets

Recall that we’ll need two filters in this case and one of the requirement is that filters
be linear phase. We can use same product filter P(z) in previous example and factor
it accordingly to suit our goals. Obviously P(z) can be factored in a number of ways
but one of the more commonly used factorization is designing one filter with two
zeros at z =−1 and the other filter contains other four zeros.

H1(z) =
1
4
(1+ z−1)2

and

H2(z) =−
1
4
(1+ z−1)2(2+

√
(3)− z−1)(2−

√
(3)− z−1)

Looking at it from discrete time-domain angle, the first filter is a “hat func-
tion”, a symmetric filter with coefficients [1,2,1]/4 and the other filter is a con-
volution between [1,2,1]/4 and [−14− 1]/2. The second filter has the coeffi-
cients [−0.1250,0.2500,0.7500,0.2500,−0.1250]. It is easy to see that both fil-
ters are symmetric, linear phase filters. We can obtain the two corresponding high
pass filters using perfect Reconstruction condition. Using Matlab, they are found
to be [0.2500,−0.5000,0.2500] and [0.1250,0.2500,−0.7500,0.2500,0.1250] This
biorthogonal filter bank is usually known as 5/3 filter bank because of the length of
th two filters ( 3 and 5 taps, respectively). The scaling and wavelet functions asso-
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ciated with these filters are calculated by iterating these filters over their respective
dilation equations and they are plotted in figure 14.

Fig. 3.25 Wavelet and Scaling Functions for 5/3 Biorthogonal Filters (p=2)

3.5.3 Lifting and Haar Decomposition

Haar Decomposition is the most basic form of wavelet decomposition which essen-
tially decomposes a signal into its average(Low Pass) and difference(High Pass).The
signal s j+1,k at scale j+1 is decomposed into approximated signal s j,k and a detail
part d j,k which is stripped away from the original signal.

s j,k =
s j+1,2k + s j+1,2k+1

2

d j,k = s j+1,2k+1− s j+1,2k

or the average s j,k can be written as

s j,k = s j+1,2k +
d j,k

2
which is the even value of the signal added to half the difference between even and
odd values of signal. In other words, if we calculate the difference first, we can
calculate the average using only even values of the signal.
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Fig. 3.26 Haar Decomposition using Lifting Scheme

Looking at this scheme from a slightly different angles, we are trying to predict
the average using only even terms. This scheme can be generalized by using three
steps

1. Split: Signal is split into even and odd components.
2. Predict: We use predict matrices P that work only on one half (even) of the

signal and replace odd part with the difference or detail of the signal. In other words,
we are trying to predict odd values using even values.

3. Update: The update matrices U update the even part by processing the differ-
ence part with U. Update is needed to preserve certain scalar quantities like average.
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Fig. 3.27 Generalized Lifting Scheme

3.5.3.1 Properties of Lifting Scheme

1. In-Place calculations: As can be seen from block diagrams, there is no reason to
keep both even and odd components of the signal. We can simply replace odd values
with the output after prediction. This idea can be extended when dealing with multi-
stage lifting scheme. We can keep replacing inputs of any given branch with outputs
and compute next stages as we go.

2. Invertibility: This is, of course, the most important property which makes lift-
ing scheme useful in calculating wavelet transforms. As can be seen from the Haar
example, the odd values of the input signal can be obtained by using even values and
he difference values. In multistage lifting scheme inversion, we start from the last
stage and keep inverting systematically until we recover the input. Inverted Lifting
Scheme is shown below.
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Fig. 3.28 Generalized Inverted Lifting Scheme

3.5.3.2 Constructing Biorthogonal Wavelets using Lifting Scheme

Consider a Biorthogonal Filter Bank with
Low Pass Analysis Filter H̃ j

High Pass Analysis Filter G̃ j
Low Pass Synthesis Filter H j
High Pass Synthesis Filter G j
With lifting, the new filters are given by

Hnew
j = H j

H̃new
j = H̃ j +S jG̃ j

Gnew
j = G j−S∗j H j

G̃new
j = G̃ j

where S j is a lifting operator which can be seen as equivalent to update operator
U.

For these new filters to work, they must satisfy perfect reconstruction property.

H̃new
j (z)Hnew

j (z)+ G̃new
j (z)Gnew

j (z) = 2

and

H̃new
j (−z)Hnew

j (z)+ G̃new
j (−z)Gnew

j (z) = 0

In Matrix notation,
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H̃new

j

G̃new
j

)
=

(
1 S j
0 1

)(
H̃ j

G̃ j

)
(

Hnew
j

Gnew
j

)
=

(
1 0
−S∗j 1

)(
H j
G j

)
Multiplying first equation on both sides with conjugate transpose of the second

equation on both sides. The product of two S j matrices is, therefore(
1 S j
0 1

)(
1 −S j
0 1

)
=

(
1 0
0 1

)
Plugging values of new filters in terms of old filters we get
These two happen to be perfect reconstruction condition for the original filters

so lifting a biorthogonal filer bank by S as shown in figure below(see Forward and
Inverse Lifted Wavelet Transform) will satisfy perfect reconstruction property.

In time-domain, these four equations can be written as

hnew
j (n) = h j(n)

h̃new
j (n) = h̃ j +∑

k
s j(k)g̃ j(n− k)

gnew
j (n) = g j−∑

k
s∗j(k)h j(n− k)

g̃new
j (n) = g̃ j(n)

Tt can be seen from the equations that g̃ j(n) and hnew
j (n) are unchanged. In order

to find new wavelets and new scaling function we’ll utilize dilation equations.
Analysis Dilation Equations

φ̃(t) = 2∑
k

h̃(k)φ̃(2t− k)

ψ̃(t) = 2∑
k

g̃(k)φ̃(2t− k)

Synthesis Dilation Equations

φ(t) = 2∑
k

h(k)φ(2t− k)

ψ(t) = 2∑
k

g(k)φ(2t− k)

Since low pass synthesis filter is unchanged, the new scaling function associated
will also be unchanged.

φ
new(t) = φ(t)

However, new wavelet function for synthesis side is as follows

ψ
new(t) = 2∑gnew(n)φ(2t−n)
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Plugging value of gnew(n) gives us the following

ψ
new(t) = 2∑g(n)φ(2t−n)−∑

k
∑s∗(k)h(n′− k))φ(2t−n)

or,

ψ
new(t) = ψ(t)−∑

k
s∗φ(t− k)

Computing similarly we’ll get ˜φ new(t) and ˜ψnew(t).

˜φ new(t) = 2∑ h̃(n)φ̃ new(2t−n)+2∑s(k)ψ̃new(t− k)

and ˜ψnew(t) = 2∑ g̃(n)φ̃ new(2t−n)

The Lifted Wavelet Transform along with its inverse is shown in figure. The
transform consists of primal lifting and dual lifting.

Fig. 3.29 Forward and Reverse Lifted Wavelet Transform

S corresponds to update stage(primal lifting) while t corresponds to predic-
tion(dual lifting). Next we express this transform in its polyphase terms. Polyphase
of a filter bank consisting of two filters H(z) and G(z) can be written as

P(z) =
(

He(z) Ge(z)
Ho(z) Go(z)

)
where H(z) = He(z2)+ z−1Ho(z2) with even and odd parts separated and G(z) =

Ge(z2)+ z−1Go(z2)
If new filter is given by Gnew(z) = G(z)+S(z2)H(z) then S(z2)H(z) can be given

by polyphase He(z)S(z) and Ho(z)S(z). Therefore, the new polyphase matrix is

Pnew(z) = P(z)
(

1 S(z)
0 1

)
For dual lifting, the equation is Hnew(z) = H(z) + T (z2)G(z). Proceeding as

above, new filter polyphase matrix is given just for dual lifting is
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Pnew(z) = P(z)
(

1 0
T (z) 1

)
Since we are using both primal and dual lifting in the same circuit, the new

polyphase on the analysis side will be˜Pnew(z) = P̃(z)
(

1 S(z)
0 1

)(
1 0

T (z) 1

)
Next assume that we are using m-level cascade of primal and dual lifting then the

new polyphase will be a product of m primal and dual matrices. Wim Sweldens and
Ingrid Daubechies proved that using this method and starting with “Lazy wavelet”
every finite wavelet transform can be obtained this way. A Lazy wavelet filter bank
is one with H(z) = 1 and G(z) = z−1.˜Pnew(z) =

(
K1 0
0 K2

)
∏i

(
1 Si(z)
0 1

)(
1 0

Ti(z) 1

)

3.6 Two Dimensional Wavelet transform

Two dimensional wavelets and filter banks are used extensively in image processing
and compression applications. It is easy to extend 1D ideas to 2D. We’ll start with
dilation equations.

φ(x1,x2) = ∑
n1

∑
n2

h0(n1,n2)φ(2x1−n1,2x2−n2)

where h0 is a 2D low pass filter while φ is a 2D scaling function. As is obvious ,
we are interested in L2(R2) spaces and in L2(R2) space filter implementations we
have two options. Either we can design 2D filters or we can use 2 1D filters to create
one 2D filter. Wavelets bases obtained from former are called nonseparable wavelet
bases while latter yields separable bases.

Let h be a 1D low pass filter while g be the corresponding high pass filter. The
scaling dilation equation can be written as

φ(x1,x2) = ∑
n1

∑
n2

h(n1)h(n2)φ(2x1−n1,2x2−n2)

We’ll have three, not one, wavelet dilation equations and three mother wavelets.

ψhg(x1,x2) = ∑
n1

∑
n2

h(n1)g(n2)φ(2x1−n1,2x2−n2)

ψgh(x1,x2) = ∑
n1

∑
n2

g(n1)h(n2)φ(2x1−n1,2x2−n2)

ψgg(x1,x2) = ∑
n1

∑
n2

g(n1)g(n2)φ(2x1−n1,2x2−n2)
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Fig. 3.30 1D Low Pass Filter h

Fig. 3.31 1D High pass filter g
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Fig. 3.32 2D Filters obtained from h and g

This idea will be made clearer shortly.

3.6.1 Two-Dimensional Separable Multiresolutions

All 1D ideas can be directly applied to 2D separable Multiresolution case. The
spaces are usually represented as V 2

j and W 2
j where V 2

j is a tensor product of two
1D spaces.

V 2
j =Vj⊗Vj

while nesting is similar to 1D case as well

V 2
j+1 =V 2

j ⊕W 2
j

The two dimensional wavelets and scaling functions can also be represented in
terms of their 1D counterparts.Consider, L2(R2) space with 1D scaling functions
φ(x1) and φ(x2) corresponding to each dimension.The wavelets are given by ψ(x1)
and ψ(x2). We are using a one-to-one correspondence with filters h and g here with
φ being associated with low pass filter and ψ with high pass filter. Corresponding
to four different filter configurations seen above, we have one scaling function and
three wavelets.

φ(x1,x2) = φ(x1)φ(x2)

ψ
1(x1,x2) = φ(x1)ψ(x2)
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ψ
2(x1,x2) = ψ(x1)φ(x2)

ψ
3(x1,x2) = ψ(x1)ψ(x2)

If φ and ψ are orthonormal basis functions in a MRA spanned by Vj and Wj
then the corresponding 2D space is also orthonormal. The three wavelets ψ1

j,n, ψ2
j,n

and ψ3
j,n form an orthonormal basis. Corresponding to these three wavelets we have

three wavelet spaces that are given by

W 2
j = (Vj⊗Wj)⊕ (Wj⊗Vj)⊕ (Wj⊗Wj)

We can extend orthonormal MRA idea to biorthogonal MRA which is actually a set
of two MRAs- one “normal” MRA and other “tilde” MRA. Common notation is to
denote analysis filter banks as “tilde” MRA.

3.6.2 2D DWT Algorithm

2D DWT algorithm is developed the same way as the 1D algorithm. Let S j,k and
W k

j,k be scaling and wavelet coefficients at scale j for a given signal f (t) where
k = 1,2,3.We’ll be working with separable orthonormal filters so 2D filters can be
expressed as a product between low pass filter h and high pass filter g. Proceeding
as before, the coefficients at scale j can be obtained from coefficients at scale j+1

S j,v = 2
1
2 ∑

k
hh(l−2v)S j+1,l

W 1
j,v = 2

1
2 ∑

k
hg(l−2v)S j+1,l

W 2
j,v = 2

1
2 ∑

k
gh(l−2v)S j+1,l

W 3
j,v = 2

1
2 ∑

k
gg(l−2v)S j+1,l



3.6 Two Dimensional Wavelet transform 67

Fig. 3.33 2D Fast Wavelet Transform

Looking at 2D Fast Wavelet transform diagram, 2D filters are developed using
two 1D filters in each branch. Just as in 1D case, these filters are time-reversed and
decimated by 2. To implement this filter bank, we use two-stage filter banks. In the
first stage, rows of two dimensional signal are convolved with h,g filters and then we
downsample columns by 2 (eg., we keep only even indexed columns). In the next
stage, columns are convolved with the filters h,g and we keep only even indexed
rows. In other words, a N ∗N image is transformed into two N ∗ (N/2) images after
first stage and four (N/2)∗ (N/2) images after the second stage.
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Fig. 3.34 2D DWT Filter Bank Implementation

Following is a 1-level and 2-level decomposition of “Lena” image using the 2D
filter bank.
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Fig. 3.35 1 level Decomposition of Lena Image
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Fig. 3.36 2 level Decomposition of Lena Image

To understand the decomposition process, we observe that the decomposition
consists of 4 equal sized blocks in 1-level decomposition.Starting from top left and
moving clockwise, they correspond to low-low band, low-high band, high-high band
and high-low band. Low-low band gives us low pass filtered image as can be seen
in the top left block. Low-high band consists of low horizontal frequencies and
high vertical frequencies. The wavelet associated with high vertical frequency is or-
thogonal to all vertical frequency components so they are cancelled out and we see
horizontal edges dominate. The high-low band has high horizontal frequencies and
the wavelet associated with this band is orthogonal to horizontal frequency com-
ponents of the image and , therefore, vertical edges are accentuated. The high-high
band accentuates corners as it isn’t directional in either the vertical or horizontal
directions.
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3.7 Complex Wavelet Transform

3.7.1 Motivation for Complex Wavelet Transform

Discrete Wavelet Transform has many advantages over Fourier Transform with main
advantage that it can do localized analysis but there are other areas where DWT lags
behind Fourier Transform. Shift Variance is one of those areas. Fourier Transform
is shift invariant which is a desirable property but the use of downsampling makes
DWT prone to shift variance. It can be seen in the figure below. An impulse response
at n = 51 results in a difference response than the same shift at n = 80 at level one
of decomposition with a Daubechies8 wavelet DWT filter bank. Not only the two
wavelet coefficients are different, the second set of coefficients contain nearly 20%
more energy than the first signal.Keep in mind, that DWT can be made nearly shift
invariant by removing downsamplers but it makes DWT “significantly” redundant.

Fig. 3.37 Shift Variance Demo

Directionality is another issue with regular DWT. As seen with 2D DWT, it is
only good in horizontal and vertical direction. While DWT can isolate diagonals
with the High-High band it cannot distinguish between signal elements aligned at
45◦and 135◦.

Some other issues with real-valued DWT are absence of any phase information
and aliasing that may be present because of quantization errors etc. which may not
allow perfect reconstruction of signal.
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3.7.2 Hilbert Transform and Analytic Signal

F(ω) =
∫

∞

−∞

f (t)e− jωtdω

Fourier Transform consists of two 90◦out of phase sine and cosine terms. It can
represented as

e− jωt = cos(ωt)+ jsin(ωt)

In order to develop complex wavelets that are analogous to Fourier Transform, it
is important to take a look at Analytic signals and Hilbert Transform.

An Analytic signal xa(t) is defined as

xa(t) = g(t)+ jĝ(t)

where g(t) is a real valued signal while ĝ(t) is the 90◦out of phase version of g(t).
We use Hilbert transform to generate ĝ(t). Hilbert transform of a signal g(t) is given
by

ĝ(t) = H(g(t)) =
1
π

∫
∞

−∞

g(t)
t− τ

dτ

Taking Fourier Transform, we get

Ĝ(ω) =− jSgn(ω)G(ω)

where
sgn(ω) = 1,ω > 0

sgn(ω) =−1,ω < 0

Since xa(t) is a complex signal, its magnitude and angle are given by

‖xa(t)‖=
√

g(t)2 + ĝ(t)2

6 xa(t) = tan−1
[

ĝ(t)
g(t)

]
Another very important property of analytic signal is that it only exists for posi-

tive frequencies.
Xa(ω) = (1+Sgn(ω))G(ω)

Xa(ω) = 2G(ω),ω > 0

Xa(ω) = G(ω),ω = 0

Xa(ω) = 0,ω < 0

This helps reduce bandwidth use by the signal and reduces aliasing.
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3.7.3 Complex Valued Wavelet Coefficients

Let ψA(t) be the analytic wavelet and let ψR(t) and ψI(t) be its real and imaginary
terms where ψI(t) = H(ψR(t)).

ψA(t) = ψR(t)+ jψI(t)

The wavelet coefficients at level j can be given by

Wa( j,n) =Wr( j,n)+ jWi( j,n)

The magnitude and angles are, therefore,

‖Wa( j,n)‖=
√

Wr( j,n)2 +Wi( j,n)2

6 Wa( j,n) = tan−1
[

Wi( j,n)
Wr( j,n)

]
As can be seen, the wavelet coefficients( as well as scaling coefficients) are com-

plex but, like Fourier transform, they can be used to analyze complex as well as real
signals. Complex wavelets can be implemented with filter banks but ,in this case,
the implementation will involve two filter banks , with one corresponding to the real
wavelet while the other corresponding to complex. Compared to decimated DWT
this Dual-Tree Complex wavelet Transform is redundant.

3.7.4 Dual-Tree Complex Wavelet Transform

As mentioned,the idea is to have two sets of analysis and synthesis filter banks in
quadrature with each other.
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Fig. 3.38 Complex DWT Analysis Bank

Fig. 3.39 Complex DWT Synthesis Bank

On the analysis side, filters h1a,h1b,g1a and g1b are all real filters but they are
designed so that h1a and g1a are in quadrature. Same is true for high pass filters h1b
and g1b. Let ψa(t) and ψb(t) be the wavelets associated with the two branches then
they need to be designed so that

ψb(t) = H[ψa(t)]

This is in addition to the perfect reconstruction conditions the filter banks have to
fulfill. The additional Hilbert Transform means that normal DWT implementations
(eg., Daubechies’s construction) won’t work and filters need to be designed from
scratch.
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3.7.5 Hilbert Transform condition

Using dilation equations, the scaling function and wavelet for top branch (real) can
be written as

φa(t) = 2∑
n

h1a(n)φ(2t−n)

ψa(t) = 2∑
n

g1a(n)φ(2t−n)

Assuming that these two filters are orthonormal, the high pass filter can be ex-
pressed as alternating flipped version of low pass filter.

g1a(n) = (−1)nh1a(d−n)

Furthermore, Selesnick showed that if the two low pass filters in the analysis
filter bank are half sample shifted version of other, the wavelet functions obtained
by iterating the related high pass filters will be Hilbert transform pair. In other words,

h1b(n)≈ h1a(n−0.5)⇒ ψb(t)≈ H[ψa(t)]

In Fourier Domain, it translates to a difference of 0.5ω while the magnitudes of
two filters are equal. A true half-sample shifted system isn’t practically realizable
so ψb(t) and ψa(t) are only approximately realizable.

3.7.6 Filter Design Methods

1. Linear Phase Biorthogonal Filters: Low pass filter h1a(n) is chosen to be even
length N symmetric filter while the other low pass filter(complex branch) h1b(n)is
chosen to be odd length N− 1 symmetric filter. It is seen that the phase difference
between the two filters is −0.5Nω− (−0.5(N−1)ω) =−0.5ω which satisfies the
half sample-shifted phase condition but magnitude isn’t necessarily equal. We can
however design filters so that the magnitudes of two low pass filters are roughly
equal.

2. Q-Shift Design: Using quarter-shift method, the low pass filters are related as
following

h1b(n) = h1a(N−1−n)

where h1a(n) filter length N is even. As can be see that this low pass filter con-
figuration has both filters having same magnitude but they don’t automatically sat-
isfy the half sample-shifted phase condition. Fourier domain frequency response of
H1b(ω) can be written as

H1b(ω) = H∗1a(ω)e− j(N−1)ω
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which corresponds to following phase response

6 H1b(ω) =−6 H1a(ω)− (N−1)ω

Since the two filters are supposed to satisfy the half sample-shifted condition

6 H1b(ω)≈ 6 H1a(ω)−0.5ω

Solving for H1a(ω), we get

6 H1a(ω)≈−0.5(N−1)ω +0.25ω

Two observations:
i. Low Pass Filter H1a(ω) is approximately symmetric.
ii. There is a quarter-shift element( It is shifted by 0.25 from the natural symmet-

ric point) present that makes the equation not fully symmetric.
The analytic wavelets in this case have real and imaginary values that are time

reversed version of each other.Since the filters are even and almost symmetric, or-
thonormal solutions are possible unlike in the first case.

3. Selesnick’s Method: In his 2002 paper, Selesnick suggested following design
for the two low pass filters.

H1a(z) = F(z)D(z)

H1b(z) = F(z)z−LD(z−1)

where D(z) is chosen such that the half sample shifted condition is satisfied.

H1b(z) = H1a(z)
z−LD(z−1)

D(z)

Observe that

A(z) =
z−LD(z−1)

D(z)

is an all pass filter which makes the magnitudes of H1a(z) and H1b(z) equal. A(z)
needs to be designed so that the two low pass filters are half sample shifted. For
more on these filters and their implementations, see the references.
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Chapter 4
Wavelet Applications

Abstract To be completed

4.1 Wavelet Applications in Signal processing

4.1.1 Sharp Transition/ Discontinuities Detection

Wavelets are short duration mathematical functions that can be dilated and translated
along a given signal and thus have the capability to analyze a signal at different
scales. This makes them ideally suited for detecting short duration rapid variations
in the signal in the form of discontinuities and singularities.

Discontinuities can be detected using either continuous or discrete wavelet trans-
forms. Example using continuous and discrete transforms utilizing db2 wavelet fol-
lows.

79
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Fig. 4.1 N=256 Piecewise Regular Signal
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Fig. 4.2 Continuous Wavelet Transform of signal using Db2 wavelet

First, let us consider continuous transform. In this example 64 scale levels are uti-
lized. Since scales are inversely proportional to frequency, the scales at the lowest
end of the figure correspond to highest frequencies and vice-versa.The lighter colors
correspond to higher coefficients. We see high coefficients value near sharp transi-
tions and the effect is much more pronounced at lower scales (higher frequencies)
as these high frequencies match with sharp transitions. The inner product between
scaled/dilated wavelet and a portion of signal yields the largest coefficients where
the signal has similar spectral components as the wavelet. Coefficients are calculated
as following

W f =< f ,ψk,s >=
∫

∞

−∞

f (t)
1√
s

ψ
∗(

t− k
s

)dt

The mother wavelet (Db2) in this case is scaled and for that scale value it is trans-
lated along the signal length and coefficients are calculated at every point.The scale
value is changed and the process is repeated. The practical implementation involves
using discrete values of translation steps and scaling values but large enough step
values approximates CWT well.

A 3D display of coefficients distribution along scales and signal length is shown
in the figure below. It can be seen that at higher frequencies CWT does a very good
job of isolating sharp transitions.
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Fig. 4.3 Continuous Wavelet Transform of signal using Db2 wavelet( 3D View)

Fig. 4.4 Undecimated Filter Bank
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Fig. 4.5 4-level Discrete Wavelet Transform of signal using Db2 wavelet

Discrete Wavelet Transform is computed a little differently considering we use
filter banks and dyadic scale values but it still does a good job of isolating sharp
transitions. We usually use undecimated filter banks in determining presence and
location of discontinuities/transitions as coefficients storage for signal reconstruc-
tion is not a crucial issue. We get detail coefficients after convolving with high pass
filters and approximation coefficients after filtering with low pass filters. If we are
resolving the signal to J=4 scales, we have one approximation set of coefficients
at 4th scale while four sets of detail coefficients. In the DWT display of signal,
approximation and detail coefficients we move from coarser scales down to finer
scales (higher frequencies). As can be seen from the figures, sharp transitions are
isolated best at the highest frequencies.

4.1.2 Signal Denoising

DWT is implemented by iterating along the low pass channel of designed filter
banks and we take out high frequency components at every stage. This kind of set-up
is specially useful when dealing with noise as it usually consists of higher frequency
components. In the following figures, an example of denoising is shown. The signal
is a doppler with frequencies decreasing in time. DWT filters out higher frequencies
from the signal in every successive stage. After 4 stages of filtering we have an
approximation of the original signal. It is seen that DWT does a good job with
lower frequencies while higher frequencies of the signal (at the beginning of the
signal) get chopped down along with the noise. DWT performs substantially better
with smoother noise-contaminated signals.
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Fig. 4.6 Original Doppler Signal
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Fig. 4.7 Doppler signal with AWGN

Fig. 4.8 4-level Discrete Wavelet Transform of Noisy signal using Db2 wavelet
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Fig. 4.9 Denoised Signal

4.2 Image Processing

4.2.1 Image Denoising

2D Discrete Wavelet works similarly to 1D transform and 1D denoising principles
can be used to denoise 2D signals.2D decomposition transforms an image into 4
subimages, each a quarter size of the original, at each level.Of these subimages,
three are detail images and one is the approximation image. Denoising methods
focus on these three detail images as they are the ones that contain high frequencies
in at least one direction. A generic denoising algorithm is given as

1. Calculate DWT of a noisy image.
2. Use thresholding in all the detail images to get rid of high spatial-frequency

components.
3. Take Inverse DWT of thresholded signal.
There are different thresholding algorithms involving different trade-offs as a

strict threshold results in loss of data while a more lax threshold leaves noise in the
image.



4.2 Image Processing 87

There are a number of algorithms( see references) that are used to denoise im-
ages. One of those method is Visushrink , which isn’t a really efficient method but
is good to illustrate the denoising process as it uses global thresholding. The thresh-
old is chosen to be T = σ

√
2logM where M is the number of pixels in the detail

subimages.Hard thresholding is pretty straightforward as all coefficients below the
chosen threshold are set to zero and results in a relatively poor performance as too
many coefficients are set to zero.

Fig. 4.10 Noisy Lena Image
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Fig. 4.11 Denoised Image using hard thresholding

Soft thresholding function is given by fs(y,T ) = sign(y)max(|y|−T,0).
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Fig. 4.12 Denoised Image using soft thresholding

Soft thresholding gives better results. For more and better algorithms, including
those utilizing local thresholds, on image denoising see references.

4.2.2 Wavelet Edge Detection

Wavelets perform well as singularity/discontinuity detector in one dimension so it
makes sense to extend the same ideas to two dimensions and edge detection. We
know that one level of separable wavelet decomposition yields four subimages and
three of these four subimages correspond to horizontal , vertical and diagonal edges.
For a straightforward wavelet edge detector implementation, all three detail subim-
ages can be linearly combined to give an edge detector at a given scale as shown
in the figure below. The edge detector is implemented using “Db4” orthogonal
wavelets and it isn’t thresholded. Thresholding can be applied to yield better re-
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sults but it is obvious from the figure that this is not an optimal solution. It is too
noisy and some true edges are missed while false edges are being detected. One of
the big issue of using high frequency response is that it contains noise and most
edge detectors used in computer vision and image processing literature use smooth-
ing gaussian filters to get rid of noise. It has been suggested that applying Gaussian
pre-processing to standard wavelet transforms will yield better results. A better ap-
proach is to use wavelets that are derived from these isotropic smoothing functions
like Gaussians and splines.

Fig. 4.13 Edge Detection at scale J=1

4.2.2.1 Mallat’s Multiscale Edge Detector

Let θ(x) be a smoothing function,ie.
∫

∞

−∞
θ(x)dx = 1, then the wavelet ψ(x) can be

defined as
ψ(x) =

dθ

dx
In his 1992 paper, Mallat designed wavelets and filters using a smoothing func-

tion with Fourier Transform

θ(ω) =

[
sin(ω/4)

ω/4

](2n+2)

The scaling and wavelet functions are given by

φ(x) =
[

sin(ω/2)
ω/2

](2n+1)
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ψ(x) = iω
[

sin(ω/4)
ω/4

](2n+2)

Filters are designed for n = 1 in the example below. For 2d implementation, we
use two smoothing functions θ1(x) and θ2(x) and we assume that they are approxi-
mately equal. The two wavelets are then given by

ψ1(x,y) =
dθ1(x,y)

dx

ψ2(x,y) =
dθ2(x,y)

dy

They can be further defined by as separable computations of one dimensional
functions.

ψ1(x,y) = 2ψ(x)φ(2y)

ψ2(x,y) = 2ψ(y)φ(2x)

Each signal sd
2 j+1( f ) is decomposed into three signals - a low pass smoothed sig-

nal sd
2 j( f ) and two high pass components that correspond to horizontal and vertical

edges if the input signal is an image, namely w1,d
2 j ( f ) and w2,d

2 j ( f ). The modulus M
of the signal is computed as

M2 j( f ) =
√
|w1,d

2 j ( f )|2 + |w2,d
2 j ( f )|2

at each point (x,y). An example of this Multiscale edge detector is shown below.
The treatment of edge detector on this page is incomplete as of now so please see
references for proofs and methods to compute Wavelet Transform Modulus Max-
ima.
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Fig. 4.14 Lena Image at scales J=1,2,3,4

Fig. 4.15 Horizontal Edge Detection at scales J=1,2,3,4
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Fig. 4.16 Vertical Edge Detection at scales J=1,2,3,4

Fig. 4.17 Image Modulus at scales J=1,2,3,4
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4.3 Wavelet Applications in Communications

4.3.1 OFDM Review

OFDM or Orthogonal Frequency Division Multiplexing is a data transmission
scheme that consists of transmitting a high rate data stream by using lower rate
data streams modulated over orthogonal subcarriers. An OFDM transmission sys-
tem consists of a constellation encoder followed by a serial-to-parallel converter and
a FFT encoder which modulates the signal symbols over an orthogonal bank of sub-
carriers. The stream is then converted from parallel to serial and a redundant guard
band is added to prevent Inter Symbol Interference caused by multipath propagation
delays in wireless and other channels.Block diagrams of OFDM Transmitters and
Receivers are shown in figures below.

Fig. 4.18 OFDM Transmitter

Fig. 4.19 OFDM Receiver

4.3.1.1 OFDM Stages

On the transmitter side, an OFDM system consists of
1. FEC Encoder : Wireless channels suffer from frequency selective fading which

may result in wiping out of certain subcarriers.However, using a combination of er-
ror correction coding and interleaving, we can counteract some of the effects of this
fading phenomena.IEEE 802.11a standard utilizes convolution coding in conjunc-
tion with Viterbi decoders at the receiver. Convolutional Encoders with encoders
with bit rates of 1/2,2/3 and 3/4 are typically used.
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2. Constellation Encoders: In OFDM systems PSK (Phase Shift Keying) and
QAM ( Quadrature Amplitude Modulation) are used to convert FEC-encoded bits
to symbols.

3. Serial to parallel Converters: are used to convert serial stream into N parallel
streams.

4. IFFT : IFFT stage is used to modulate these parallel streams into N orthogonal
channels.

5. Serial to Parallel Converters : convert these parallel streams to serial stream
6. Cyclic Extension: One of the biggest issues with wireless channel happens to

be multipath delay. Any transmitted signal is prone to get reflected by obstacles in
the path( buildings, trees etc.) and instead of receiver getting one copy of the signal,
it may receive multiple delayed copies. OFDM uses lower rate subcarriers which
helps with delay spread but in order to almost completely remove multipath delay
cyclical extension is used in which last L subcarriers out of N [L < N] are folded
back in front of each OFDM symbol in order to form one large L+N orthogonal
symbol. As long as channel multipath delay is smaller than L all delayed copies of
the given symbol continue to be orthogonal to the original symbol and they don’t
overlap with the next symbol and are , therefore cancelled out.

OFDM receiver stages are essentially the reverse of the transmission stages as
can be seen from the block diagram.

Mathematically,an OFDM signal x[k] can be seen as a series of ,say, s OFDM
symbols each consisting of M orthogonally modulated waveforms.

x[k] = ∑
s

M−1

∑
m=0

as,mφm[k− sM]

where φm[k] are M orthogonal waveforms such that

< φm[k],φn[k]>= δ [m−n]

In the case of regular OFDM case, we use FFTs to implement orthogonal chan-
nels, such that

φm[k] = e
j2πmkT

M

4.3.2 Advantages of OFDM

1. Orthogonality between subcarriers allows channel overlap and , thus, more effi-
cient use of Bandwidth.

2. Orthogonality also helps in eliminating ICI ( Inter Channel Interference) as
subcarriers are orthogonal to each other.

3. ISI ( Inter Symbol Interference) can be dealt with by using a guard band or
cyclic prefix. Essentially, we don’t use all subcarriers for data transmission. Instead
some of the subcarriers use redundant information as data of the last L subcarriers
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is folded back and added as a prefix to the symbol. This cyclic prefix is discarded at
the receiver and helps guard against things such as multipath effects where delayed
copies of same symbol is received because of inefficiencies in wireless channel.

4. Use of lower-rate multiple subcarriers helps in dealing with noise by using
proper channel coding. A loss of handful of subcarriers due to noise can be compen-
sated by using error correction codes while noise in high rate single carrier systems
may result in loss of entire stream.

4.3.3 Wavelet Packet Modulation

Since OFDM channels consist of M orthogonal subcarriers, we need M-band
wavelet implementation if we want to substitute wavelet transform in place of DFTs.
We achieve this using wavelet packet decomposition and reconstruction. Instead of
dyadic iterations across only low pass filters, we dyadically decompose both high
and low pass filters at every stage as show in the figure for two level wavelet packet
tree decomposition.
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Fig. 4.20 Wavelet two-level packet Decomposition

This wavelet tree is equivalent to one stage 4 band wavelet filter bank as shown
in the figure.
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Fig. 4.21 Wavelet two-level packet Decomposition Equivalent Representation
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Decomposition is done similarly for any M = 2n. The filters of M-band wavelet
transform are obtained using noble identities and iterated filter bank properties. They
are respectively H(z)H(z2),H(z)G(z2),G(z)H(z2) and G(z)G(z2). Wavelets corre-
sponding to these filters are computed using scaling and wavelet dilation equations.
The dilation equations are different in the M-band case:

φ(t) := ∑
k

hh(k)φ(Mt− k)

and

ψ(t) := ∑
k

gg(k)φ(Mt− k)

where hh and gg filters are iterated bandpass filters obtained using noble identi-
ties.

An M-band wavelet system has one scaling function corresponding to the low
pass filter and M−1 wavelet functions corresponding to each bandpass filter. For a
three level wavelet packet decomposition using Daubechies orthonormal wavelets,
the filters and M = 8 wavelets[unnormalized] are plotted in Matlab.

Fig. 4.22 Equivalent Filter Banks for 3 level wavelet packet decomposition tree
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Fig. 4.23 Wavelets for 3 level wavelet packet decomposition tree

4.3.4 Wavelet Packet Based OFDM systems

Wavelet based OFDM systems are similar to regular OFDM with orthogonal sub-
carriers generated by iterated wavelet filter banks instead of DFTs but there are
several crucial differences. Wavelet-OFDMs have better ISI and ICI performance.
In addition, wavelet symbols generated are longer than DFT symbols. The length
of iterated wavelet filters for M level wavelet packet decomposition is equal to
(M− 1)(L− 1) + 1 where L is the length of original filters. For higher level de-
compositions, iterated wavelet filters are significantly larger which results in longer
subcarrier symbols. Guard Band or cyclical prefix is usually not needed in Wavelet
OFDM case. A block diagram of Wavelet OFDM can, therefore, be given by

Fig. 4.24 Wavelet OFDM Transmitter
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Fig. 4.25 Wavelet OFDM Receiver

Some properties of W-OFDM are following
1. Wavelet-OFDM has much better power spectrum characteristics than conven-

tional OFDM which results in significantly improved band-rejection properties.For
more on this , visit HD-PLC alliance webpage at http://www.hd-plc.org/modules/about/original.html
.

2. Variable symbol lengths and variable subcarrier bandwidths can be easily ob-
tained if we choose not to fully decompose each branch. This can be especially
useful in wireless channels and other channels that suffer from frequency selective
fading as it makes sense to not transfer same amount of data on each subcarrier.

3. Guard bands (cyclical prefix) is usually not needed (the WOFDM symbols
are longer and they overlap which makes an effective cyclical prefix impossible to
implement anyway) which results in more efficient data transmission. Additionally,
pilot symbols( used for estimation and synchronization purposes in conventional
OFDM) are not needed which adds to bandwidth efficiency.

4. WOFDM is entirely dependent on scaling filter (all other filters can be obtained
from it) so it is much more flexible and we can design the system according to our
needs by choosing the correct type of orthogonal filters.

5. It has been shown that wavelet systems give better Inter Carrier Interference
(ICI) and Inter Symbol Interference (ISI) performance thanks to a more robust or-
thogonal construction.

For more information on WOFDM applications in industry, most prominently
in wireless and powerline communications, see HD-PLC Panasonic, IEEE 802.11
standard resources( for information about conventional OFDM) and IEEE P1901
powerline standards/working groups websites. Check the references.
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4.4 Wavelets and Seismology

4.5 Biomedical Engineering Applications

4.6 Image Compression

4.6.1 Image Approximation

The ideas for one dimensional signal approximation using fewer coefficients were
developed previously. These ideas can be extended to 2−D signals, ie. images. It
was also shown that Nonlinear Approximation results in better performance than
linear approximation.Recall that Nonlinear approximation consists of selecting M
largest coefficients instead of the first M coefficients as in Linear case. Nonlinear
approximation performance for wavelets is significantly better than in the linear
case as quite a few large coefficients exist at every scale of signal decomposition.
In the images case, we’ll stick with nonlinear approximation owing to its superior
performance.

4.6.1.1 Approximation Example: Lena Image Approximation using 1/50
coefficients

As an example of approximation , consider the Lena image approximation using
Fourier Transform and Wavelet Transform. Algorithms are same as in the 1−D
case.
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Fig. 4.26 Original 512X512 Lena Image

In Fourier case, we take the fourier transform of the image and retain only the
largest one out of fifty coefficients while setting the rest equal to zero and then we
reconstruct the image using only largest 2% coefficients . The reconstructed image
is shown below.

Fig. 4.27 Lena Image Fourier Approximation using only largest 2% coefficients

Next we repeat the same approximation process with Wavelet Method. We take
J = 4 stage Discrete Wavelet Transform (derived from Db2 wavelets) of the Lena
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image, choose the largest 1
50 coefficients while setting the rest equal to zero. Then

the Inverse Discrete Wavelet Transform is taken using these new coefficients. The
resulting Image is shown below and is seen to be superior reconstruction compared
to the Fourier case.

Fig. 4.28 Lena Image Wavelet Approximation using only largest 2% coefficients

4.6.2 Information Theory Background

Let us assume that system source is a discrete and finite consisting of N symbols
and is given by S also known as alphabet.

S = [s0,s1, ....,sN−1]

Let X = [x0,x1, ....,xi, .... be a collection of output sequence where each output xi
is taken from the set S. The probability that this system outputs the kthsymbol sk is
given by pk where

N−1

∑
k=0

pk = 1

as there are only N symbols.
Self-Information: We define information content Ik of each symbol based on its

probability of being the output. It is given by

Ik =− log2(pk)



4.6 Image Compression 105

and is measured in bits. If pk = 1 or the symbol occurs every time then the in-
formation content of such a certain event is zero. On the other hand if the event is
impossible pk = 0 then the information content of such an event is ∞. More realis-
tically, the likelier an event , less information is needed to define the event. On the
other hand, unlikley events carry more information.

Source Entropy: is defined as expected value of self-information.

H(S) = E{Ik}=−
N−1

∑
k=0

pk log2(pk)

H(S) is measured in bits per symbol and is maximal for flat probability distribu-
tion, ie., if each symbol is equally probable 1

N then H(S) = log2(N). Smaller source
entropy can be obtained if probability distribution isn’t flat.

Average Bit rate Rx: Let lk be the length of the code associated with kth symbol
with output probability pk then the Average Bit Rate Rx is given by

Rx =
N−1

∑
k=0

pklk

The objective of good coding is to minimize the average bit rate for a given
information source.Also, H(S) sets the lower bound on average bit rate so Rx for a
particular coding scheme can be measured against source entropy.

Prefix Code: One important condition for any good code is that no codeword
can be a prefix of another codeword. As an example consider a code with following
codewords

c1 = 1,c2 = 11,c3 = 10,c4 = 101

Consider a sequence 1011. It can be written as both c4c1 and c3c2 which will
not work at the decoder stage. The solution is to generate codes using prefix binary
tree.Each node of the tree has only one input branch and no more than two output
branches with left branch labeled as 0 branch and right branch as 1. The binary tree
ends in K leaves each corresponding to a unique codeword. In this case, length lk of
each codeword is given by the number of branches from the node to the kth leaf.

4.6.2.1 Huffman Coding

Premise of Huffman coding is that more probable a symbol, the shorter its length
should be. If P(si)< P(s j) then l j >= li. Huffman Codes are constructed in 4 steps
as following.

1. Arrange symbol probabilities in decreasing order. p0 >= p1 >= .... >= pN−1.
The symbols sk form the kth leaf nodes in binary tree T .

2. Combine the two nodes with lowest probability to form a new “parent” node.
The new node will have the probability.

p12 = p1 + p2
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where p1 and p2 are the probabilities of the two “children” nodes while p12 is
the probability of the new “parent” node.We assign 0 value to the branch connecting
parent node to child node with probability p1 and 1 value to the branch connecting
parent node to child node with probability p2.

3. Update binary tree T by replacing the two children nodes with the parent node.
If the tree has more than one node after updating repeat step 2. If there is only one
node left, it is the root node.

4. Codeword of each sk can be obtained by traversing from root node to the kth
leaf node.

Example:

Fig. 4.29 Huffman Coding Tree Example

The codeword can be obtained as in 4. We get

s1 = 0,s2 = 10,s3 = 110,s4 = 111

The average bit rate is found by using

Rx =
N−1

∑
k=0

pklk = 0.4∗1+0.3∗2+0.2∗3+0.1∗3 = 1.9

The source entropy is calculated using

H(S) = E{Ik}=−
N−1

∑
k=0

pk log2(pk)

H(S)=−[0.4∗log2(0.4)+0.3∗log2(0.3)+0.2∗log2(0.2)+0.1∗log2(0.1)]= 1.846

The average bit rate is a bit higher than source entropy but still gives better results
than usual bit coding which corresponds to 2 bits per symbol for this example.
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4.6.2.2 Arithmetic Coding

Drawbacks of Huffman Coding
1. It assigns integer length to each symbol.
2. It depends on the source probabilities. If the system is adaptive with probabil-

ities that change, the code has to be reset each time.
Basis of Arithmetic Coding: Consider a binary sequence B= 100111011. We can

convert it into a decimal number 0≤ v≤ 1 by expressing it as 0.1001110112, which
is equal to v = 0.61523437510. In other words, regardless of how large a number
is, it can be mapped to [0,1). In arithmetic coding, we create a sequence of nested
intervals

φk(S) = [ak,bk)

where ak and bk are real numbers and

0≤ ak ≤ ak+1,bk+1 ≤ bk ≤ 1

Alternatively, we can represent each interval in form of base (lowest value b) and
the length of the interval l.

|b, l >

Arithmetic coding Algorithm
1. Find probability distribution and cumulative distribution of the source inputs.
2. Find |b0, l0 > which is the initial value. Typically, initial values correspond to

|0,1 > or the entire length of the probability distribution.
3. Corresponding to the first input value, find |b1, l1 >. These two values are

calculated as follows

|bk, lk >= |bk−1 + c(sk)lk−1, p(sk)lk−1 >

where the kth input corresponds to one value in the set of source symbol and p(sk)
and c(sk) are respectively the probability and cumulative density functions associ-
ated with the source symbol.

4. Corresponding to every new input value we update the base sequence and its
length by using 3.

5. Once the last input value, say nth value is read, we have a sequence |bn, ln >.
This interval is used to encode a binary number choosing a value that corresponds
to shortest binary code. This value is the arithmetic encoded value.

Example: Let us consider a source consisting of four symbols with probability
and cumulative distribution given as

p = [0.2,0.5,0.2,0.1]

c = [0,0.2,0.7,0.9,1]

Let us consider an input sequence S = [2,1].
Corresponding to first value 2, we have p(s1) = 0.2 and c(s1) = 0.7. Calculating
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|b1, l1 >= |b0 + c((s1)l0, p(s1l0 >= |0.7,0.2 >

Corresponding to second value 1, we have p(s2) = 0.5 and c(s2) = 0.2. Calcu-
lating

|b2, l2 >= |b1 + c((s2)l1, p(s2l1 >= |0.74,0.10 >

If we are transmitting only two values, this encoding gives us a choice to generate
shortest binary number in the range 0.74− 0.75. Minimum number of bits needed
for encoding purposes are given by

Bm =− log2(ln)

Bm is rounded up to the nearest integer. This coding is especially effective for a
large chain of input values as all inputs are encoded together as a block with trade
off being a more complex implementation is needed to generate the codeword.

Decoding
Although some overhead is needed, decoding depends solely on binary string v.

The decoding is done as follows
1. Define v1 = v.
2. The output value is given as follows:

so
k = s : c(s)≤ vk ≤ c(s+1)

Essentially, we map so
k on the symbol interval based on value of vk and c(s) is

the cdf of the symbol value corresponding to s. As is obvious , the decoder needs
the probability distributions (pdf and cdf) of the source symbols in order to decode
the binary string. This adds to the overhead but it amounts to small value in case of
large scale data transmission.

3. Update Value of vk+1 as following:

vk+1 =
vk− c(sk)

p(sk)

4. One issue with arithmetic coding is that the recursion formula in 3 will keep
going on regardless of the number of input values so some overhead is needed to
tell the decoder where to stop. Typically, overhead can consist of number of input
values N along with the binary string v and probability distributions. The decoder
can then decode for N output values. If k == (N +1), the decoder stops else we go
back to step 2.
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4.6.3 Wavelet Image Compression System

Fig. 4.30 Wavelet Image Compression System

Wavelet Compresser broadly consists of three stages.
1. Wavelet Transform Stage: The advantage of wavelet transform stage can be

seen in the image approximation example shown earlier. The image is transformed
into a set of coefficients most of which are close to zero and can be eliminated
which results in substantial reduction in amount of data that needs to be encoded.
Thresholding is done in order to further reduce the number of significant coeffi-
cients. Various algorithms will be covered in the next section.

2. Quantizer: Quantization step is usually skipped if one is aiming for lossless
compression, eg. medical imaging systems, as quantization is non-invertible. In
case of lossy compression, quantization is done to reduce precision of the values
of wavelet transform coefficients so that fewer bits are needed to code the image.
For example if the transform coefficients are 64- bit floating point numbers while a
compression of the order of 8 bits per pixel is required then quantization is neces-
sary.

3. Encoding: Encoding was covered in previous chapter. Basically, quantized
wavelet transform coefficients are coded so that fewest number of bits are required.
Huffman coding, arithmetic coding and their variants are usually used in these sys-
tems.

4.6.4 Wavelet Transform Stage

Image Decomposition in terms of two level filtering can be shown as in the next
figure. LLd represents Low-Low pass filtered image at the decomposition level d.
LHd , HLd and HHd represent Low-High pass filtered image, High-Low Pass filtered
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image and High-High pass filtered image respectively at decomposition level d. The
2D filter bank is also shown here.

Fig. 4.31 Image Decomposition

Fig. 4.32 2D DWT Filter Bank Implementation

Three level decomposition of an image (cameraman) is given in the figure below.
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Fig. 4.33 Image Decomposition

In the figure above, large coefficients are shown by color pink while negligible
coefficients are depicted by black and dark shades. The LL3 image is the one con-
taining most significant coefficients while higher frequency image segments have
very few large coefficients as most of their coefficients are either zero or nearly zero.
Additionally, it can be seen that there is a spatial relationship between coefficients
at different decomposition levels.

4.6.5 Zero-Tree Coding

If we look at coefficients in ,say, LHd subimage and compare them to coefficients in
LHd−1, it is seen that there is a spatial relationship across scales. For example, there
are a bunch of zero coefficients near the cameraman’s shoulder (high coefficient
region ) and it is replicated across scales in LH subimages. Same is true for HLd
and HHd subimages. This multiscale dependency is the basis of zero-tree coding.
For every coefficient at coarse scale there are 4 “children” at the next finer scale, ie.
one HLd coefficient is the “parent” of four coefficients in HLd−1 and “grand parent”
of 16 coefficients in HLd−2. The finest scale coefficients don’t have any children.

4.6.5.1 Embedded Zero-Tree Wavelet(EZW) Coding

J.M. Shapiro introduced EZW coding in his groundbreaking 1993 paper. EZW
makes use of zero-trees and is a progressive encoding system, ie., as more bits are
added the system becomes more accurate.Coding is done in multiple passes. Large



112 4 Wavelet Applications

coefficients are most important but the way zero-tree deals with smaller coefficients
is what makes EZW so effective.

Algorithm
Initial threshold T0 is chosen based on the largest coefficient |y|max

|y|max

2
< T0 < |y|max

We also define Tk where Tk = T02−k, k = 0,1, ...,K − 1 and is used to update
threshold value with every pass.

Let us assume that we are compressing an NXN image. This image is coded
using K+1 binary arrays( bit planes). First bit plane consists of sign bit, the second
represents the Most Significant Bit of each coefficient and so on. This process can
be terminated at any bit plane n < K but larger the number of bits that are encoded,
more accurate the coding is.

Significance Pass: Coefficients are scanned from LLd down to HH1 in order and
it is ascertained whether they are significant or insignificant. An example of a sig-
nificance pass and labeling can be as following-

We can use 4 labels to define coefficients
1. POS : Positive Significant. The absolute value of coefficient is greater than the

threshold and coefficient has positive sign.
2. NEG : Negative Significant. The absolute value of coefficient is greater than

the threshold and coefficient has negative sign.
3. ZTR : Zero Tree Root. The coefficient value is 0 and so are the values of each

of its descendants.
4. IZ : Isolated Zero. The coefficient value is 0 but the descendant values are not

all zero.
Refinement Pass : Once we have labeled coefficients, the next pass is used to

code the bit values. Each significant bit is compared with updated threshold value
Tk, ie. , T1 = T0/2 and so on in successive passes. If it is greater than Tk then a bit
value 1 is the output, otherwise 0 is the output.

Full Algorithm
1a. Set wavelet transform mean to zero by subtracting the mean from each sample

value. We should end up with positive and negative values instead of just positive
values.

1b. Sign bits are assigned based on whether the coefficient is greater than or less
than zero. These sign bits are transmitted in addition to bit plane encoded bits.

2. Choose Initial threshold T0. It is usually chosen as

th = f loor(log2(|y|max))

T0 = 2th

where (|y|max) is the largest coefficient value as mentioned earlier.
3. Significance Pass: In which we find the significant bits in each iteration. They

are POS (P) or NEG (N). Insignificant bits are either ZTR(Z) or IZ(I).
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4. Refinement Pass: All coefficients are set to zero and then we systematically
assign bit values only to significant bits. This is done by comparing the coefficient
values of POS (P) and NEG (N) with the threshold. If they are greater than the
threshold, the output bit is 1 and we subtract the threshold value from the absolute
coefficient value and the updated coefficient value is stored in the coefficient map.

5. Threshold is updated Tk = T02−k for k = 1, ...,K
6. Repeat steps 3-5 until either all K bit planes are finished or the process is

terminated early if less accuracy is needed.

4.6.6 JPEG2000 Wavelet Standard

JPEG2000 uses two wavelet transforms. Both are biorthogonal but only one is “re-
versible” as it uses only integer coefficients.

1. Biorthogonal 9/7 Wavelet Transform: It introduces quantization error as coef-
ficients are non-integer.

2. Biorthogonal 5/3 Wavelet Transform.

4.6.6.1 JPEG2000 Coder Basics

1. Color Component Transformation and Tiling : RGB image is transformed into
either YCBCR or YUV . this transformed image is then divided into blocks(tiles),
each of which is processed separately.

2. Wavelet Transform:N level dyadic transform is performed on each tile using
either 9/7 or 5/3 biorthogonal wavelets.

3. Scalar Quantization and Partition: Scalar Quantization is used to reduce com-
plexity at the cost of some loss of quality. Packet partitioning is done to transform
each quantized subband into a set of non-overlapping rectangles.

4. Block Coding: Code blocks are formed using non-overlapping rectangles.
Each code block is encoded separately using arithmetic coding of bit planes. Bit
plane coding is done in three passes- significance, refinement and clean up. In case
of lossless coding, all bit planes need to be coded and transmitted. These bit planes
are then encoded using arithmetic coder.

For more details on JPEG2000, see the references.
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Chapter 5
Advanced Topics

Abstract To be completed

5.1 Directional Wavelets

5.1.1 2D Continuous Wavelet Transform

All geometric operations in 2D space can be seen as a combination of three opera-
tions.

1. Translation: Translation in 2D corresponds to translation in 1D space. A trans-
lation of vector b̄ is represented as x̄− b̄. ∀x̄, b̄ ∈ R2

2. Dilation : Dilation by a scalar a is given by ax̄.
3. Rotation : Rotation by θ which is given by rθ (x̄) where rθ is the usual rotation

matrix given by(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
Let s(x̄) be a 2D signal then the three operations on this signal are given by

sb̄,θ ,a(x̄) =
1
a

s(
r−θ (x̄− b̄)

a
)

where ∀x̄, b̄ ∈ R2,∀θ ∈ [0,2π],∀a > 0
If the signal s is rotation invariant then such a signal is given by

sb̄,a(x̄) =
1
a

s(
x̄− b̄

a
)

which is 2D equivalent of a 1D translated and dilated signal.
Definition: A 2D continuous wavelet transform of a 2D signal with respect to a

2D wavelet ψb̄,θ ,a is given by the inner product

115
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Sb̄,θ ,a =< ψb̄,θ ,a,s >

Sb̄,θ ,a =
∫

R2
s(x̄)ψ∗b̄,θ ,ad2x̄

Sb̄,θ ,a =
1
a

∫
R2

s(x̄)ψ∗(
r−θ (x̄− b̄)

a
)d2x̄

The Fourier Transform is given by

Ŝb̄,θ ,a = a
∫

R2
eib̄ω̄ ŝ(ω̄)ψ̂∗(ar−θ (ω̄))d2

ω̄

5.1.1.1 2D CWT Visualization

2D CWT consists of four variables - two spatial variables represented by b̄, scale
parameter a and rotation parameter θ . Given that four dimensional visualization is
really difficult, the solution is to eliminate one or more variables and then plotting
Sb̄,θ ,a, the 2D wavelet transform.

1. Position Representation : The scale and rotation parameter are fixed and CWT
is plotted as a function of 2D space.

2. Scale-Angle Representation : The position parameters are fixed while we vary
scale and angles to plot CWT.

Using Polar Co-ordinates : Instead of two-dimensional space parameter b̄ we
can use polar representation (|b̄|,α) where |b̄| =

√
b2

x +b2
y known as range and

α = arctanby/bx which is also known as perception angle. We can use these four
parameters to come up other sets of visualizations, namely

3. Perception Angle-Scale Representation : We fix range and rotation angle while
using perception angle and scale.

4. Range-Rotation Angle Representation: Range and Rotation angles are used
while fixing scale and perception angle.

5. Scale-Range Representation: Scale and Range are used while fixing both an-
gles.

6. Angle-Angle Representation: Angles are used while fixing range and scale.

5.1.1.2 Wavelet Discretization

The issue with 2D continuous transform is same as in the 1D case. It contains a
lot of redundant information and a comprehensive continuous transform will be
impossibly computationally intensive. We deal with it the same way by discretizing
this transform. We choose a grid δ to discretize as following

1. Discretized Scale Parameter is given as

a j = a0λ
− j
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where λ > 1. If we choose dyadic scales then λ = 2.
2. Discretized Rotation Parameter is uniformly discretized over the entire rotation

space [0,2π) as following

θl =
2lπ
L

where l = [0,1, ...,L−1] ,∀L ∈ N,∀l ∈ Z
3. Translation Parameters are discretized using scale and rotation parameters.

b̄ jlmxmy = a0λ
− jrθl (mxβx,myβy)

b̄m = b̄ jlmxmy

Wavelet Transform is discretized as following by putting a0 = 1 and using dis-
cretized b̄m

Sb̄m,θl ,λ
− j = λ

j
∫

R2
s(x̄)ψ∗(λ jr−θl (x̄− b̄m))d2x̄

The Fourier Transform is similarly given by
Ŝb̄m,θl ,λ

− j = λ− j ∫
R2 eib̄mω̄ ŝ(ω̄)ψ̂∗(λ− jr−θl (ω̄))d2ω̄

5.1.2 Isotropic vs Anisotropic Wavelets

Isotropic Wavelets are rotation invariant wavelets whereas Anisotropic wavelets are
directional wavelets. One example of wavelet family that can be used to generate
isotropic and anisotropic wavelets is 2D Mexican Hat Wavelet.Anisotropic wavelets
can be obtained by stretching isotropic wavelets in a desired direction. This is ac-
complished by using Anisotropy matrix A

Xa = AXiso

where A = diag[ε−
1
2 ,1] is a 2X2 matrix for ε ≥ 1

Mexican Hat Wavelets are Laplacian of Gaussian functions which are given by

ψm(x,y) = [2− (x2 + y2/ε)]e(−
(x2+y2/ε)

2 )

ε = 1 gives Isotropic wavelet which is plotted in figure below.

ψmiso(x,y) = [2− (x2 + y2)]e(−
(x2+y2)

2 )

Anisotropic (Rotation Variant) Wavelet is given by using the formula introduced
above.
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ψb̄,θ ,a(x̄) =
1
a

ψ(
r−θ (x̄− b̄)

a
)

Different values of θ and scaling parameters a generate different Mexican hat
wavelets. For this example, we use values of a = 0.8, θ = 3π/4 and ε = 5. It should
be noted,however, that these “stretched” wavelets only have limited directional se-
lectivity.

Fig. 5.1 Isotropic and Anisotropic Mexican Hat Wavelets

5.1.3 Directional Wavelet Examples

A wavelet is said to be directional wavelet if its fourier transform is directionally
contained in a convex cone in frequency space ω with apex at the origin. Thus,
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anisotropic Mexican Hat wavelet even with its directional selectivity is not a Direc-
tional wavelet as it is centered around the origin.

2D Morlet Wavelet is given by

ψM(x) = eik̄0 x̄e−
1
2 |Ax̄|2 − e−

1
2 |A
−1 k̄0|2e−

1
2 |Ax̄|2

where A = diag[ε−
1
2 ,1] is a 2X2 matrix for ε ≥ 1 and k̄0 is a n− dimensional

vector corresponding to n− dimensional x̄ vector. Morlet wavelet is complex and
assuming we take values of ε = 3 and k̄0 = (0,6), real and imaginary parts of Morlet
can be plotted as shown below.

Fig. 5.2 Real Part of Morlet Wavelet
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Fig. 5.3 Imaginary Part of Morlet Wavelet

2D plots of real and imaginary parts along with phase and modulus are also
shown. Color white corresponds to highest amplitudes while black corresponds to
lowest amplitudes. Phase plot is the most interesting one as it is a collection of
straight lines whose intensity varies linearly and periodically in perpendicular di-
rection( to k̄0 ).
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Fig. 5.4 Morlet Wavelet Directionality Properties

In spatial frequency domain, the fourier transform ψ̂M(ω) is centered at k̄0 in-
stead of origin and its directionality depends on anisotropic matrix ,specifically on
value of ε . The Fourier Transform is elongated in ωy direction in this case. The
shape of cone depends on ε value as greater anisotropy corresponds to narrower
cone.

ψ̂M(ω) =
√

ε(e−
1
2 |A
−1(ω̄−k̄0|2 − e−

1
2 |A
−1 k̄0|2e−

1
2 |A
−1ω̄|2)

The second term is usually small for large values of k̄0 and is therefore ignored.
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Fig. 5.5 Morlet Wavelet Frequency Transform

5.1.4 Directionality and Separable Filter Banks

Standard 2D DWT has limited directionality as it resolves directions in only three
directions- horizontal, vertical and diagonal. 2D Filter Bank Implementation of 2D
DWT is shown below
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Fig. 5.6 2D Discrete Wavelet Transform

The directional decomposition of Lena image using this filter bank is three-
directional with large coefficients in spatial band pass frequency domain aligned
in vertical, horizontal and diagonal directions.
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Fig. 5.7 1-level DWT decomposition of Lena Image

Standard 2D DWT is isotropic as filtering and sampling operations are performed
identically in both horizontal and vertical directions. As we know, there are three
wavelets corresponding to three bandpass frequency domains - the low-high band,
high-low band and high-high band and as can be seen they have limited direc-
tional properties.However, low complexity and ease of implementation means that
isotropic separable filter banks are used extensively in practice. The three wavelets
corresponding to Haar filters are plotted below.
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Fig. 5.8 Three Haar Wavelets for 1-level 2D DWT

5.1.4.1 Anisotropic DWT using Separable Filter Banks

In certain 2D applications it is desirable to detect edges and contours that are aligned
at various angles. Standard DWT gives sub-optimal performance in these type of
cases.One straightforward and slightly better method is to use anisotropic DWTs
that are constructed by using unequal filtering and sampling operations in horizontal
and vertical directions. As mentioned this is not an optimal approach but may result
in better performance in certain cases. One such example is anisotropic filtering is
shown below.
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Fig. 5.9 2D Anisotropic Discrete Wavelet Transform Example

It uses three-levels of filtering and subsampling operations at the analysis and
synthesis( not shown) side which means higher complexity than the standard case
which uses two levels of operations. In this particular case, horizontal filtering and
subsampling is followed by vertical filtering(and subsampling) and the third level
consists of horizontal filtering(and downsampling) so for every stage of DWT oper-
ations, a 2D signal is divided into 8 subimages- one low pass subimage and 7 band
pass subimages. This can be seen for “Lena” Image.
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Fig. 5.10 1-Stage Anisotropic DWT decomposition of Lena Image

As can be seen the 7 bandpass images accentuate different directional elements
of the image. This directionality property of this particular Anisotropic DWT can
be further studied by plotting wavelets associated with each of the seven bandpass
subimages for one stage of DWT decomposition. As in the standard DWT case,
these seven wavelets are plotted corresponding to Haar wavelet filters.
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Fig. 5.11 Seven Haar Wavelets for 1-stage 2D Anisotropic DWT

As can be seen from the wavelet plots , while the directional properties are better
in this case, such a configuration will still struggle to isolate edges and contours
arbitrary aligned in the 2D space.

5.2 Steerable Pyramid

5.2.1 Theory of Steerable Filters

Steerable Filters are a class of oriented filters that can be expressed as a linear com-
bination of a set of basis filters. As an example, let us consider isotropic Gaussian
filter G(x,y).

G(x,y) = e−(x
2+y2)

First derivative of G(x,y) is given by G1 and let Gθ
1 be the first derivative rotated

by an angle θ about the origin. In x direction the angle θ = 0◦ and in y direction,
θ = 90◦.
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G0◦
1 =

∂G
∂x

G0◦
1 =−2xe−(x

2+y2)

and

G90◦
1 =

∂G
∂y

G90◦
1 =−2ye−(x

2+y2)

In 2D space G0◦
1 and G90◦

1 are seen to span the entire space and are the basis filters.
An arbitrarily oriented first derivative filter can be expressed as a linear combination
of these two filters.

Gθ◦
1 = G0◦

1 cos(θ)+G90◦
1 sin(θ)

For θ = 30◦, the three filters can be plotted as below

Fig. 5.12 Gaussian First Derivative Filters oriented a) in x-direction b) in y-direction and c) at
30◦about the origin

The first derivative of Gaussian is also an edge detection filter which smooths the
2D signal and then computes the gradient. Having an oriented version of this filter
helps in isolating oriented edges and contours. Convolution of an Image I with an
oriented Gaussian first derivative filter Gθ◦

1 can be given by

Iθ◦
o = Gθ◦

1 ∗ I
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Iθ◦
o = (G0◦

1 ∗ I)cos(θ)+(G90◦
1 ∗ I)sin(θ)

or,
Iθ◦
o = I0◦

o cos(θ)+ I90◦
o sin(θ)

Convolution of a simple symmetric image with different values of θ is shown
below.

Fig. 5.13 An Image convolved with oriented Gaussian first derivative filters

The same plot with an edge detection( gradient computation) point of view is
also shown below.



5.2 Steerable Pyramid 131

Fig. 5.14 Edge Detection:Image convolved with oriented Gaussian first derivative filters a) original
Image, oriented b) in x-direction, c) in y-direction, d) at 30◦, e) 15◦, f) 60◦

5.2.1.1 Adelson and Freeman Steerability Theorems

Adelson and Freeman proved three theorems in their 1991 paper and these theorems
form the basis of Steerable filters and wavelets. A function f (x,y) steers given the
steering condition

f θ (x,y) =
M

∑
j=1

k j(θ) f θ j(x,y)

where f θ j(x,y) are M basis functions and k j(θ) are steer coefficients for a given
orientation θ . f (x,y) is usually represented in polar coordinates as f (r,φ) where
r =

√
x2 + y2 and φ = tan−1(y/x).

Theorem 1 : Steering condition holds if and only if k j(θ) are solutions of follow-
ing equations 

1
eiθ

.

.
eiNθ

=


1 1 . 1

eiθ1 eiθ2 . eiθM

. . . .

. . . .
eiNθ1 eiNθ2 . eiNθM




k1(θ)
k2(θ)
.
.

kM(θ)


The polar coordinate representation of steerable function can be expanded as

f (r,φ) =
N

∑
n=−N

an(r)einφ
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Theorem 2 : Let T be the number of positive or negative frequencies for which
an(r) 6= 0 then the number of basis filters M must be >= T .

Example- let us consider the first derivative of a Gaussian. It can be written in
polar coordinates form as

G0◦
1 =−2rcos(φ)e−r2

or,
G0◦

1 =−re−r2
(eiφ + e−iφ )

which means that T = 2 and we need M ≥ 2 basis filters to steer the Gaussian
first derivative.

Theorem 3 : Let f (x,y) =W (r)PN(x,y), where W (r) is any windowing function
and PN(x,y) is an Nth order polynomial in x and y then f (x,y) can be steered in any
direction using 2N +1 basis filters.

5.2.2 Steerable Pyramid

Steerable filter banks are implemented as pyramids. The implementation is done
in two steps- the radial element( Pyramid) and the angular implementation which
adds orientation to band pass filters. The implementation is in some ways similar to
wavelet filter bank implementation with certain key differences. We resolve pyramid
into a pass band and a cascade of low pass band filters with subsampling present only
in the low pass cascade. The overall pyramid response is low pass. A single-stage
Steerable Pyramid is shown below.

Fig. 5.15 Single Stage Steerable Pyramid

B(ω) is the band pass filter while L1(ω) and L0(ω) are the low pass filters. Band
Pass filters are not subsampled in order to prevent aliasing while low pass filters are
designed so that there is no aliasing (|L(ω)| = 0,∀ω ≥ π/2 ). Angular frequency
computations depend on number of orientation bands needed. For example, if four
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orientation bands are used then the band pass filter is designed and rotated in four
directions and each orientation θ is essentially a weighted linear combination of four
basis filters. A two-stage Pyramid implementation is shown below. Decomposition
is carried out on the low pass branch. It is assumed that system response ( which is
low pass) is actually L0(ω) which helps in designing low pass and band pass filters.

Fig. 5.16 Two-Stage Steerable Pyramid

5.2.3 Steerable Pyramid Implementation

As an example of Steerable Pyramid implementation we will consider the pyramid
shown below which was proposed by Simoncelli, et al. An image is pre-processed
by filtering it along two channels - one high pass and the other low pass. The de-
composition is done on the low pass image by further filtering it with oriented band
pass filters. The number of band pass filters k is determined by the desired number
of orientation bands. The cascaded pyramid structure is implemented by replacing
⊕ in the low pass band by the entire structure contained within the dotted lines.



134 5 Advanced Topics

Fig. 5.17 Steerable Pyramid Implementation

5.2.3.1 Filter Constraints

1. Perfect Reconstruction
a) Unity System Response Amplitude

|L0(ω)|2[|L1(ω)|2 +
k−1

∑
n=0
|Bn(ω)|2]+ |H0(ω)|2 = 1

b) Cascaded Structure must preserve the prefect reconstruction condition and the
low pass nature of the lower branch which gives us following equation

|L1(ω/2)|2[|L1(ω)|2 +
k−1

∑
n=0
|Bn(ω)|2] = |L1(ω/2)|2

c) As mentioned earlier, low pass filters must be designed to prevent aliasing as
we use subsampling in low pass branch.

L0(ω) = 0

for all |ω|> π/2
2. Orientation : Oriented Band Pass filters are given by

Bn(ω) = B(ω)(− jcos(θ −θn))
k−1

where θ = arg(ω) , θn =
πn
k and n = 0,1, ...,k−1

Filters Design
2D Filters for Steerable Pyramid can designed using techniques proposed by

Karasaridis et al. and then by Castleman et al.L1(ω) is designed as a 1D raised
cosine filter. We then choose L0(ω) = L1(ω/2) and band pass filters are obtained
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using perfect reconstruction and angular constraints. These filters are converted to
2D filters using McClellan Frequency Transformation outlined in Jae Lim’s book.
The chosen filters are all 17X17 filters.

5.2.4 Steerable Pyramid for k = 2 Orientations

As can be seen from the Steerable Pyramid figure we need 5 filters to implement k =
2 orientation pyramid. The first two filters L0 and H0 are shown below. These two are
also known as pre-processing filters(or post-processing filters at the reconstruction
stage).

Fig. 5.18 Steerable Pyramid Pre-Processing Filters L0 and H0

The next set of filters are known also known as Iterated Filters as they are part of
the cascaded stage of the Pyramid. We add N cascades for N level of decomposition.
N = 3 is used in this example. The three filters are the low pass filter L1 and two
oriented band pass filters B0 and B1.
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Fig. 5.19 Steerable Pyramid Iterated Filters B0, B1 and L1

This pyramid is used to decompose “Zoneplate” image at three scales. It can be
seen that the images at all three scales are oriented in two different directions.

Fig. 5.20 3 Level k = 2 Oriented Decomposition of Zoneplate Image.
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5.2.5 Steerable Pyramid for k = 3 Orientations

The only difference between k = 2 and k = 3 or ,indeed, any other value of k is that
we have to design k different abnd pass filters alongside two low pass and one high
pass filters. Pre-processing and post-processing filters L0 and H0 filters are designed
the same way and are shown below.

Fig. 5.21 Steerable Pyramid Pre-Processing Filters L0 and H0

As mentioned earlier, we will have to design three oriented band pass filters in
this case. These three filters along with the iterated low pass filter L0 are shown in
the following figure
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Fig. 5.22 Steerable Pyramid Iterated Filters B0, B1, B2 and L1

This Steerable Pyramid is used to decompose “Zoneplate” image at three scales.
It can be seen that the images at all three scales are oriented in three different direc-
tions.

Fig. 5.23 3 Level k = 3 Oriented Decomposition of Zoneplate Image.
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5.3 Multiwavelets

5.3.1 MultiWavelet Dilation Equation

Multiwavelet Dilation( Refinement) Equation is given by

φ(x) =
√

M∑
k

Hkφ(Mx− k)

k ∈ Z where φ(x) is a rX1 vector given by

φ(x) =


φ1(x)
φ2(x)
.
.

φr(x)


and Hk is a rXr matrix. Additionally, r is known as Multiplicity and M is known

as Dilation Factor. Scalar wavelets can be seen as a special case of Mutiwavelets
with M = 2 and r = 1.

5.3.1.1 Orthogonality Condition

The scaling vector φ(x) is orthogonal if

< φ(x),φ(x− k)>=
∫

φ(x)φ ∗(x− k)dx = δ0,kI

where I is a rXr identity matrix.
Or, equivalently the orthogonality can be given in terms of Hk matrix

∑
k

HkHT
2l+k = δ0,lI

The equation above can be proved by substituting dilation equation into the inner
product equation.

5.3.2 DGHM Multiscaling Functions

Donovan, Geronimo, Hardin and Massopust proposed DGHM wavelets that are de-
fined by the following recursion coefficients (Hk matrices)

H0 =
1

20
√

2

[
12 16

√
2

−
√

2 −6

]
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H1 =
1

20
√

2

[
12 0

9
√

2 20

]

H2 =
1

20
√

2

[
0 0

9
√

2 −6

]

H3 =
1

20
√

2

[
0 0
−
√

2 0

]
DGHM Multiscaling functions are orthogonal as

3

∑
k=0

HkHT
2l+k =

[
1 0
0 1

]

5.3.3 MultiWavelet Multiresolution Analysis

Orthogonal MultiWavelet MRA is identical to scalar wavelets MRA with following
properties.

1. Vj ⊂Vj+1 A function in subspace j is in all the finer subspaces. In other words,
if we know a signal f j(x) at subspace Vj, we can obtain ts coarse approximation
using MRA. Think of a signal being decomposed using an iterated chain of comple-
mentary low pass and high pass filters. At every step we obtain a low pass and high
pass version of the signal from the previous step. However, the low pass signal in
step two is contained in the signal from the step one.

2. f (t) ∈ V0⇔ f (x− k) ∈ V0 This is the translation (shift) invariant property of
the subspace. A signal in a given subspace , if translated by k ∈ Z is still in that
subspace. This property is valid for all subspaces.

3. f (x) ∈Vj⇔ f (2x) ∈Vj+1 This is the scale invariant property of the Multires-
olution analysis. In frequency domain terms, f (2t) contains 2X highest frequency
compared to that contained in f (t). Using iterated filter bank example with a low
pass filter that halves the frequencies in every step, it becomes clear that moving
back one step in each step of the filter chain doubles the highest frequency content.

4.
⋂

j→−∞ Vj = {0} As we move to lower subspaces, the space occupied by Vj
shrinks until it becomes nearly zero.

5.
⋃

j→∞ Vj = L2(R) Union of all subspaces as j → ∞ encompasses the whole
L2(R) space.

6. Multiwavelets: We define functions ψ
s(x) such that they are orthogonal to

φ(x) and to each other where ψ
s ∈ L2 and s = 1, ...,M−1. Given k ∈ Z , ψ

s(x− k)
forms a stable basis of W0.

Since each ψ
s ∈V1 , it can be written as

ψ
s(x) =

√
M∑

k
Gs

kφ(Mx− k)

The functions ψ
s are called multiwavelet functions.
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Orthonormality Conditions

∑Gs
kGt∗

Ml+k = δ0lδst I

∑Gs
kH∗Ml+k = ∑HkGs∗

Ml+k = 0

5.3.4 Discrete MultiWavelet Transform

Let Qk give detail at level k while Pk give approximation at that level.

L2 =⊕Wn

Therefore, a function f can be given as summation of details at all levels.

f =
∞

∑
−∞

Qk f

L2 =VJ⊕Wj

where j = J, ...,∞
or,

L2 =⊕∞
−∞Wj

as
Vn =⊕n−1

k=−∞
Wk

We observe that Pl f converges to f as l→ ∞. Let Pn f be the projection of f in
the space Vn and Qn f be the projection of f in the space Wn.

Vn +Wn =Vn+1
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or,
Vn +Wn +Wn+1 + ...+Wn+l =Vn+1+l

Therefore, f = Pn f + ∑
l
k=n Qk f for some l > n is the Discrete MultiWavelet

Transform (DMWT) and it is identical to DWT.

f = Pn f +
l

∑
k=n

Qk f

f = ∑
j

an, jφ n, j +∑
j

M−1

∑
s=1

ds
n, jψ

s
n, j

where an, j and ds
n, j are approximation and detail coefficients and identical to the

DWT case.

5.3.5 Biorthogonal MRAs and MultiWavelets

As is the case with scalar wavelets, φ and φ̃ are scaling function vectors in the
Synthesis and Analysis domain respectively.

5.3.5.1 Biorthogonality Condition

< φ(x− k), φ̃(x− l)>= δlkI

In terms of low pass symbol

∑HkH̃∗k+Ml = δ0lI

The two scaling equations are given by

φ(x) =
√

M∑
k

Hkφ(Mx− k)

φ̃(x) =
√

M∑
k

H̃kφ̃(Mx− k)

Projections Pn f and P̃n f of a L2 function f onto Vn and Ṽn are given as

Pn f = ∑
j

ãn, jφ n, j

and

P̃n f = ∑
j

an, jφ̃ n, j
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The approximation coefficients can be calculated as

ãn, j =< f , φ̃ n, j >=
∫

f φ̃
∗
n, jdx

an, j =< f ,φ n, j >=
∫

f φ
∗
n, jdx

Therefore,
Pn f =< f , φ̃ n, j > φ n, j

and

P̃n f =< f ,φ n, j > φ̃ n, j

The projections Qn f and Q̃n f are defined as

Qn f = Pn+1 f −P+n f

Q̃n f = P̃n+1 f − P̃n f

and the subspaces are non-orthogonal direct sums given by

Vn +Wn =Vn+1

Ṽn +W̃n = Ṽn+1

Biorthogonality Conditions as applied to subspaces in multiwavelet case are
same as in the scalar case.

Vn⊥Ṽn

Vn⊥W̃n

Wn⊥Ṽn

and

Wn⊥W̃n

if k 6= n
Discrete MultiWavelet Transform (DWMT) in this case is same as that in scalar

biorthogonal DWT case. Biorthogonalty conditions in terms of low pass and high
pass symbols are given as

∑HkH̃∗k+Ml = δ0lI
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∑Gs
kG̃t∗

Ml+k = δ0lδst I

∑Gs
kH̃∗Ml+k = ∑HkG̃s∗

Ml+k = 0

5.3.6 Pre-processing and Post-processing

Discrete MultiWavelet Transform (DMWT) is given by

f = ∑
j

an, jφ n, j +∑
j

M−1

∑
s=1

ds
n, jψ

s
n, j

Like DWT, DMWT requires samples an+1, j to start decomposition which we
don’t have. Instead , we have sampled versions f (x) of signal f (t).

Preprocessing is the process of getting an+1, j from the samples f .

an+1, j =< f ,φn+1, j >

Similarly, postprocessing is needed at the reconstruction stage in order to obtain
reconstructed signal from the IDMWT outputs.

5.4 Wavelet Meshes

5.5 Monogenic Wavelet Transform

5.6 More Topics
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Appendix A
Software and Scripts

All’s well that ends well

A.1 Matlab Codes

A.2 Octave Implementations

A.2.1 About Octave

A.2.2 Octave Scripts

145





Glossary

Currently Left Blank

147


